
COMPARATIVE ANALYSIS OF SINGLE AND MULTI-AGENT LARGE
LANGUAGE MODEL ARCHITECTURES FOR DOMAIN-SPECIFIC TASKS IN

WELL CONSTRUCTION

Vitor Brandão Sabbagh

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
de Sistemas e Computação, COPPE, da
Universidade Federal do Rio de Janeiro, como
parte dos requisitos necessários à obtenção do
título de Mestre em Engenharia de Sistemas e
Computação.

Orientador: Geraldo Bonorino Xexéo

Rio de Janeiro
Julho de 2025



COMPARATIVE ANALYSIS OF SINGLE AND MULTI-AGENT LARGE
LANGUAGE MODEL ARCHITECTURES FOR DOMAIN-SPECIFIC TASKS IN

WELL CONSTRUCTION

Vitor Brandão Sabbagh

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO
GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E
COMPUTAÇÃO.

Orientador: Geraldo Bonorino Xexéo

Aprovada por: Prof. Geraldo Bonorino Xexéo
Prof. Jano Moreira de Souza
Prof. Arnaldo Cândido Júnior

RIO DE JANEIRO, RJ – BRASIL
JULHO DE 2025



Brandão Sabbagh, Vitor
Comparative Analysis of Single and Multi-Agent Large

Language Model Architectures for Domain-Specific Tasks
in Well Construction/Vitor Brandão Sabbagh. – Rio de
Janeiro: UFRJ/COPPE, 2025.

XV, 90 p.: il.; 29, 7cm.
Orientador: Geraldo Bonorino Xexéo
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2025.
Referências Bibliográficas: p. 62 – 68.
1. Large Language Models. 2. Agents. 3.

Oil Well Construction. I. Bonorino Xexéo, Geraldo.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia de Sistemas e Computação. III.
Título.

iii



To Carolina, my life partner.

iv



Acknowledgements

To my daughter, Marina, who came into the world just two months ago, bringing a
new light and a new purpose to my life. I dedicate every page of this work to you,
with the hope of building a bright future for you.

To my parents, Vera and Nicolau, for all the love, unconditional support, and
for always believing in me. Your faith in my abilities was the foundation for this
achievement.

To my beloved wife, Carolina, my gratitude for all the patience, understanding,
and love, especially during the most challenging moments of this journey. Without
your support, this work would not have been possible.

To my stepson, Filipe, thank you for the moments of joy and relaxation that
helped me maintain balance, especially during our Minecraft adventures. May our
friendship continue to grow.

I express my deep gratitude to my mentor, Claudio, for his unwavering support
and trust since the beginning of my career in digital transformation. His mentorship
was fundamental to my professional development.

To my advisor, Xexéo, thank you for the wise guidance, academic rigor, and
patience throughout this entire process. Your teachings were crucial to the quality
of this work.

I extend my gratitude to the well construction engineering experts, Marcelo
Grimberg, Rafael Peralta, and Lorenzo Simonassi, whose expertise and dedication
significantly contributed to this research.

I also want to thank Ashish Vaswani. His work on “Attention Is All You Need”
paved the way for the Large Language Models that were not only the subject of this
dissertation but also an invaluable tool that helped me put ideas into words.

Finally, a special thanks to my colleagues from Petrobras, Tecgraf Institute, and
the UNESP team. Our daily discussions about Gen-AI were an inexhaustible source
of inspiration and knowledge, immensely enriching this dissertation.

v
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A indústria de óleo e gás, particularmente no domínio da construção de poços,
enfrenta desafios significativos para extrair eficientemente conhecimento de vastos
repositórios de dados técnicos não estruturados e semiestruturados. Esta disser-
tação avalia e compara a eficácia, a eficiência e a viabilidade prática de diferentes
arquiteturas de Geração Aumentada por Recuperação (RAG), abrangendo desde
pipelines não-agênticos até configurações de agente único e multiagente, para a res-
olução de desafios de recuperação de informação em domínios específicos. Adotando
a metodologia de Design Science Research (DSR), este estudo foi conduzido através
de dois ciclos experimentais distintos. O primeiro ciclo (2024) forneceu uma com-
paração fundamental, revelando que, embora uma arquitetura multiagente tenha
alcançado 28% mais veracidade (truthfulness) em tarefas de Pergunta e Resposta
(Q&A), seu custo operacional foi, em média, 3,7 vezes maior, e um sistema de agente
único foi surpreendentemente mais eficaz para tarefas de Texto-para-SQL (Text-
to-SQL). O segundo experimento, mais rigoroso (2025), introduziu workflows não-
agênticos como linha de base (baseline) e empregou uma metodologia de avaliação
quantitativa e automatizada, utilizando um “LLM-como-juiz” (LLM-as-a-judge),
para avaliar o desempenho com base em precisão, revocação (recall) e F1-score.
Este segundo ciclo produziu uma descoberta crucial e contraintuitiva: uma arquite-
tura RAG não-agêntica, utilizando um roteador inteligente para selecionar a fonte
de conhecimento apropriada, superou tanto os sistemas de agente único quanto os
multiagente. Este resultado levou à hipótese central do “déficit de conhecimento de
domínio” (domain knowledge deficit), que postula que, em domínios técnicos alta-
mente especializados onde o LLM carece de conhecimento profundo pré-treinado, as
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capacidades de raciocínio cíclico e reflexivo dos sistemas agênticos são menos eficazes
do que um processo de recuperação otimizado e bem direcionado. A pesquisa conclui
que, para aplicações industriais práticas, o foco arquitetônico deve estar na otimiza-
ção dos mecanismos de recuperação e roteamento, em vez de recorrer a frameworks
agênticos mais complexos e dispendiosos, fornecendo uma orientação clara e baseada
em evidências para a adoção estratégica dessas tecnologias.
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The oil and gas industry, particularly in the domain of well construction, faces
significant challenges in efficiently extracting knowledge from vast repositories of
unstructured and semi-structured technical data. This dissertation evaluates and
compares the effectiveness, efficiency, and practical viability of different Retrieval-
Augmented Generation (RAG) architectures, ranging from non-agentic pipelines to
single and multi-agent setups, for resolving domain-specific information retrieval
challenges. Adopting a Design Science Research (DSR) methodology, this study
was conducted through two distinct experimental cycles. The first cycle (2024)
provided a foundational comparison, revealing that while a multi-agent architec-
ture achieved 28% higher truthfulness in Question-Answering (Q&A) tasks, its op-
erational cost was, on average, 3.7 times higher, and a single-agent system was
surprisingly more effective for Text-to-SQL tasks. The second, more rigorous ex-
periment (2025) introduced non-agentic workflows as a baseline and employed an
automated, quantitative evaluation methodology using an LLM-as-a-Judge to assess
performance based on precision, recall, and F1-score. This second cycle produced a
crucial and counter-intuitive discovery: a non-agentic RAG architecture using an in-
telligent router to select the appropriate knowledge source outperformed both single
and multi-agent systems. This finding led to the central hypothesis of the “domain
knowledge deficit”, which postulates that in highly specialized technical domains
where the LLM lacks deep pre-trained knowledge, the cyclical reasoning and reflec-
tive capabilities of agentic systems are less effective than a streamlined, well-directed
retrieval process. The research concludes that for practical industrial applications,
architectural focus should be on optimizing the retrieval and routing mechanisms
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rather than defaulting to more complex and costly agentic frameworks, providing
clear, evidence-based guidance for the strategic adoption of these technologies.
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Chapter 1

Introduction

In the dynamic and ever-changing oil and gas (O&G) industry, digital transforma-
tion has emerged as a key element to achieve operational efficiency, sustainability,
and competitiveness. At the forefront of this transformation are Large Language
Models (LLM), which have the potential to process unstructured queries, map out
courses of action, and advise users on possible solutions to industrial problems (KAR
and VARSHA, 2023). We also note the advantage of increased engagement, cooper-
ation, accessibility, and ultimately profitability. These models redefine paradigms in
knowledge management and information retrieval and impact a variety of other ar-
eas (ECKROTH and GIPSON, 2023), making it crucial to adopt these technologies
to remain competitive.

A study conducted by DELLACQUA et al. (2023), in collaboration with the
Boston Consulting Group, shows that in knowledge-intensive tasks, consultants
equipped with access to LLMs such as GPT-4 not only completed tasks more effi-
ciently (25.1% more quickly on average) but also with substantially higher quality,
achieving results more than 40% better compared to those without AI assistance
(DELLACQUA et al., 2023). Increase in productivity of knowledge workers was
12% on average. A major oil company spent in 2023 $2.8B with employee compen-
sation (PETROBRAS, 2024). A potential increase of 12% in knowledge workers
productivity, given they represent 60% of all employee, could represent $204M an-
nual savings in this scenario.

Broader economic indicators predict significant transformations due to generative
AI (Gen-AI) across various industries. A report from Goldman Sachs (HATZIUS
et al., 2023) highlights that Gen-AI is poised to increase global GDP by nearly 7%,
increasing productivity growth by 1.5 percentage points over the next decade. This
economic uplift is expected due to AI’s ability to automate complex workflows and
create new business opportunities, significantly impacting employment and produc-
tivity sectors worldwide.

Expanding on the broader discussion on data utilization within organizations,
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an important issue is the challenge of extracting relevant information from extensive
databases (SINGH et al., 2023). Initially, the challenge of knowing, finding, and ac-
cessing data poses a significant obstacle to decision-making processes. Collaborators
at O&G companies often face the intensive task of manually searching large data
repositories to find useful information.

Focusing specifically on the activities of drilling and completion of offshore and
onshore wells, a major challenge lies in the inherently complex and technical na-
ture of the data involved, which can be from various types: operations, projects,
technologies, supply chains, and others. Inefficiency in leveraging large volumes of
unstructured data increases these challenges, as observed by SINGH et al. (2023).
A significant amount of the data generated and collected in this sector is unstruc-
tured, ranging from text reports and emails to images and videos of exploration
and production activities. Examples include hundreds of daily operational reports
from drilling rigs, well execution projects, nonproductive time (NPT) reports, and
documents of operational lessons learned, as illustrated in Figure 1.1. As a result,
valuable information can remain untapped, and the potential to find insights, in-
formed decision-making, and innovation is significantly compromised. SINGH et al.
(2023) showcases the capabilities and potential of Generative AI-enabled chatbots
for the O&G sector, particularly in enhancing drilling and production analytics to
achieve better business results. The author concludes that companies that adopt
these technologies in the coming years will see clear advantages.

However, the deployment of such technologies presents limitations and intro-
duces challenges, including biased data, hallucinations1, lack of explainability, and
logical reasoning errors, among others (HADI et al., 2023), which require a balanced
approach to harness their potential in a responsible manner. Although previous re-
search has focused mainly on the broader applications of AI in industry, the novelty
of our research lies in its original examination of the specific challenges and solutions
presented by the complex, technical and unstructured data inherent in O&G oper-
ations. By comparing single- and multi-agent systems, this study fills a knowledge
gap, providing empirical insights into the effectiveness of different Gen-AI architec-
tures in a domain where such studies are scarce.

The adoption of these technologies by a major oil company underscores their
potential to revolutionize data analysis and management, presenting an opportunity
for deeper exploration and application.

1Information that is incorrect or simply fictional.
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Figure 1.1: Sample of drilling & completion learned lesson partial document. (trans-
lated from Portuguese)

1.1 Business Scope Delimitation

To contextualize the scope of this study, it is necessary to understand the life cycle
of an oil field, which begins with Exploration and progresses to the Development of
Production, followed by effective Production, and culminates in Decommissioning
(BADIRU and OSISANYA, 2016). Gen-AI has the potential to impact each of
these phases, but the focus of this work lies in the operations of the development
and maintenance stages.

Well construction is a highly specialized activity that involves drilling and com-
pletion of wells for hydrocarbon extraction (THOMAS, 2004). In this context, Gen-
AI can be applied in various ways. For example, a chatbot could manage knowledge
by answering queries about operations and well projects by retrieving information
from the organization’s databases. Additionally, LLM-based agents could be used
in executive project review to ensure that drilling or completion operations comply
with the organization’s standards and adhere to best operational practices. More-
over, Gen-AI could perform inference in unstructured databases to extract specific
information from text reports and obtain structured data. This business scope em-
phasizes the importance of Gen-AI in the construction and maintenance of wells.

3



1.1.1 Key Information Sources in Well Engineering

To fully appreciate the challenges in this domain, it is important to understand the
primary data sources that specialists interact with daily. The following sources, used
in this research’s experiments, exemplify the complex information landscape of well
engineering:

Operational Learned Lessons. During drilling, completion, and workover inter-
ventions, documents called Knowledge Items are written by specialists, as depicted
in Fig 1.1. These can be of four types: Technical Alert, Learned Lesson, Good
Practice, and Well Observation. This system serves as a critical tool for knowledge
management, considering the large number and variety of specialists involved and
well operations performed.

Operational NPTs (Non-Productive Time). This data source contains struc-
tured records of anomalies that occurred during well interventions, detailing the title,
description, location, operation type, responsible sector, rig involved, time lost, and
event dates. These data are critical for the industry, as NPTs represent periods when
operations are interrupted. The identification and analysis of these events are essen-
tial for continuous process improvement, cost reduction, and increased operational
efficiency.

Collaborator Finder. The third data source is a collaborator finder, an impor-
tant internal tool for consulting and managing employee data. This system allows
for the quick identification of employees through information such as name, work-
place, and role. The importance of this tool lies in the ability to cross-reference
employee data with operational events, enabling a more complete analysis by an
intelligent agent.

1.2 Objectives

The primary goal of this dissertation is to systematically evaluate and compare the
effectiveness, efficiency, and practical viability of different LLM-based architectures
for resolving domain-specific information retrieval challenges in well construction
engineering. This research aims to move beyond generalized performance metrics to
provide specific, empirical insights into how architectural choices impact outcomes
in a industrial setting.

To achieve this overarching goal, the following specific objectives have been de-
fined:
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1. Design and Implement LLM Artifacts: designing and implementing a
set of distinct retrieval-augmented generation (RAG) architectures, including
non-agentic (baseline and router-based) and agentic (single-agent and multi-
agent) systems, tailored to the operational context of well construction.

2. Evaluate Performance Quantitatively: evaluating the performance of
these artifacts on domain-specific tasks using both expert-led qualitative as-
sessments and automated quantitative metrics, including truthfulness, preci-
sion, recall, and F1-score.

3. Analyze Cost-Effectiveness: conducting a comparative analysis of the eco-
nomic efficiency of each architecture, focusing on the trade-offs between per-
formance gains and the computational costs associated with LLM API usage.

4. Derive Actionable Guidance: identifying the key challenges, limitations,
and failure modes of each architecture within a specialized technical domain,
and to derive practical, evidence-based guidelines for the strategic adoption of
these technologies in the oil and gas industry.

1.3 Research Questions

To guide this investigation and structure the research, the study addresses a central
research question, which is broken down into three specific sub-questions. These
questions will be formally answered in the conclusion, based on the evidence gathered
from the two experimental cycles.

Main Research Question

How do different LLM based architectures, ranging from non-agentic RAG
pipelines to multi-agent systems, compare in terms of performance, efficiency,
and practical viability when applied to domain-specific information retrieval
tasks in well construction engineering?

RQ1: Performance and Task-Dependency Which architecture (non-agentic,
single-agent, or multi-agent) provides the highest factual accuracy and overall per-
formance for different types of domain-specific tasks, specifically complex Question-
Answering (Q&A) and structured Text-to-SQL generation?
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RQ2: Cost-Effectiveness What is the relationship between architectural com-
plexity and economic cost? How do the performance benefits of more complex
systems (e.g., multi-agent) weigh against their significantly increased computational
(API) costs, and what are the implications for practical deployment?

RQ3: Agentic Systems and Domain Specificity Under what conditions do
agentic architectures, with their capacity for cyclical reasoning and reflection, offer
a tangible performance advantage over simpler, non-agentic RAG workflows in a
highly specialized technical domain where the LLM has a significant “knowledge
deficit”?

To answer these questions, this research was conducted through two distinct ex-
perimental cycles. The first, carried out in 2024, established a foundational compari-
son, revealing that while a multi-agent architecture achieved 28% higher truthfulness
in Q&A tasks, its cost was on average 3.7 times higher. Furthermore, a single-agent
architecture proved to be surprisingly more effective in Text-to-SQL tasks.

The rapid evolution of generative AI frameworks and models prompted a sec-
ond, more advanced experiment in 2025. This second phase built upon the initial
findings, employing non-agentic workflows as a baseline and a more rigorous, auto-
mated evaluation methodology based on the “LLM-as-a-Judge” concept (GU et al.,
2025). This led to a crucial and counter-intuitive discovery: a non-agentic archi-
tecture using an intelligent router to select the correct knowledge source decisively
outperformed both single and multi-agent systems. This finding suggests that in
specialized domains where the LLM lacks deep pre-trained knowledge, the reflective
capabilities of agentic systems are less effective than a streamlined, well-directed
retrieval process, fundamentally shaping the answers to our research questions.

1.4 Research Methodology

This research follows the Design Science Research (DSR) methodology, a framework
particularly suited for studies that develop and evaluate technological artifacts to
address specific organizational problems. DSR provides a structured approach for
creating innovative solutions while maintaining scientific rigor through empirical
validation (HEVNER, 2007).

1.4.1 Design Science Research Framework

The DSR methodology employed in this study consists of four interconnected ele-
ments, as illustrated in Figure 1.2:
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Figure 1.2: Main elements of DSR-Model, translated from OSWALD et al. (2023).

1. Problem in Context: Identifying and defining a relevant organizational
challenge within its specific environment

2. Artifact: Designing and developing a technological solution to address the
identified problem

3. Behavioral Conjectures: Formulating hypotheses about how the artifact
will function and impact the problem space

4. Empirical Evaluation: Systematically testing the artifact to validate its
effectiveness and the underlying conjectures

This cyclical framework guides both the research design and execution, ensur-
ing that the developed artifacts are not only technically sound but also practically
relevant.

1.4.2 Application of DSR in This Research

Problem in Context

This study addresses the challenge of efficiently extracting relevant information from
extensive technical databases in the oil and gas industry, specifically in well construc-
tion and maintenance operations, as listed in Table 1.1.

Artifacts

Four primary artifacts were designed and implemented across the two experimental
cycles, illustrated in Figure 1.3, using state-of-the-art language models and inte-
grated with domain-specific knowledge bases through various retrieval mechanisms.
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Table 1.1: Characteristics of the Problem Context
Challenge Aspect Description
Data Structure Large volumes of unstructured data

(operational reports, lessons learned
documents, NPT reports)

Technical Complexity Domain-specific terminology, com-
plex relationships and tacit knowledge

Business Impact Significant potential economic impact
from improved knowledge access

Linear-Flow (Baseline)
Non-agentic RAG pipeline with a
single sequential LLM step that
queries all tools and synthesizes

the answer

Linear-Flow with Router
Non-agentic pipeline with an initial

routing LLM call that selects the most
appropriate tool(s) before retrieval

Single-Agent LLM System
A centralized architecture where one

language model agent handles the entire
question-answering process with

access to multiple tools

Multi-Agent LLM System
A collaborative architecture where
multiple specialized agents work

together
under coordination to process queries

Figure 1.3: Primary artifacts developed and evaluated across the two experimental
cycles.

Behavioral Conjectures

The research was guided by several key conjectures:
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Key Research Conjectures

• Multi-agent systems will demonstrate higher accuracy in complex techni-
cal queries due to their ability to distribute cognitive load and specialize
in different aspects of the problem

• The performance advantages of multi-agent systems will vary by task
type (Q&A vs. Text-to-SQL)

• More advanced language models will yield better performance but at
significantly higher LLM financial costs

• The economic efficiency (performance-to-cost ratio) will be a critical
factor in determining practical implementation viability

Empirical Evaluation

The evaluation was conducted through two distinct experimental phases (summa-
rized in Table 1.2), allowing for iterative refinement of both the artifacts and the
evaluation methodology, addressing limitations identified in the first experiment
while adapting to the rapid evolution of language model capabilities.

Table 1.2: Comparison of Experimental Phases
Aspect First Experiment (2024) Second Experiment (2025)
Focus Comparative analysis of single

and multi-agent architectures
Extended evaluation incorpo-
rating non-agentic workflows as
baseline

Evaluation
Methods

Expert validation by domain
specialists

Automated assessment using
LLM-as-a-Judge approach

Metrics Truthfulness, performance, and
LLM cost

Precision, recall, and F1-score

Outcomes Identification of key challenges
and limitations

More rigorous quantitative eval-
uation methodology

1.5 Thesis Structure

This dissertation is organized into five main chapters, followed by appendices, to
present the research in a logical and structured manner.

• Chapter 1 - Introduction: This chapter introduces the research context
within the oil and gas industry, highlighting the challenges of knowledge
management in well construction. It defines the business scope, establishes
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the research objectives and guiding research questions, and outlines the DSR
methodology that structures the study.

• Chapter 2 - Literature Review: This chapter provides the theoretical
foundation for the research. It reviews the key concepts of LLMs, RAG, and
the architecture of both single and multi-agent systems. It also covers the
evaluation methodologies pertinent to this work, including traditional metrics
and the LLM-as-a-Judge paradigm.

• Chapter 3 - First Experimental Evaluation Cycle: This chapter details
the initial experiment comparing single-agent and multi-agent architectures.
It follows the DSR framework to describe the artifact design, the expert-led
evaluation process, and the results based on metrics of truthfulness, perfor-
mance, and cost. The findings from this cycle reveal the initial trade-offs and
limitations that motivate the second experiment.

• Chapter 4 - Second Experimental Evaluation Cycle: This chapter
presents a more rigorous and extensive evaluation. It introduces non-agentic
workflows as baselines and employs an automated, quantitative evaluation
methodology using an LLM-as-a-Judge approach. The results from this cycle
provide crucial insights into the performance of different architectures, leading
to the central hypothesis of the “domain knowledge deficit”.

• Chapter 5 - Conclusion: This final chapter synthesizes the findings of the
entire study. It provides direct answers to the research questions, summarizes
the main contributions to theory and practice, acknowledges the limitations
of the work, and proposes promising directions for future research.

Finally, the Appendices provide supplementary material, including the detailed
dataset used in the experiments and the source code for the evaluation prompts, to
ensure transparency and facilitate reproducibility.
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Chapter 2

Literature Review

This chapter provides a comprehensive literature review of the key technologies and
concepts that form the foundation of this dissertation. It begins with an overview
of the applications of Artificial Intelligence (AI) in the Exploration and Production
(E&P) industry. The focus then narrows to LLMs, discussing their architecture and
impact. Subsequently, the chapter delves into the RAG technique, which enhances
LLMs with external knowledge. It also explores the use of single and multi-agent
setups. Finally, the chapter concludes by examining the LLM-as-a-Judge paradigm
for evaluating the performance of generative models.

2.1 AI in the Exploration and Production (E&P)
industry

The use of AI in the Exploration and Production (E&P) industry has been extensive.
In the last decades the majority of AI applications in the industry involved data
mining and neural networks (BRAVO et al., 2014). An example is the work by
(GUDALA et al., 2021) on optimization of the properties of the heavy oil flow,
through the use of neural networks to optimize flow-influencing parameters. Another
development was a deep learning workflow proposed by (GOHARI et al., 2024), with
the generation of synthetic graphic well logs through the application of transfer
learning. These developments illustrate the potential of AI to improve processes
and the accuracy and efficiency of data analysis (RAHMANI et al., 2021).

Recent studies highlight domain-specific advances in textual AI for geosciences,
particularly in Named Entity Recognition (NER) under low-resource conditions.
MAZE et al. (2024) proposed a two-phase pipeline that (i) builds a high-quality,
semi-automatically labeled dataset via ontology-driven rules, taxonomies, and ex-
pert validation, and (ii) augments it using LLM-based rephrasing constrained to
preserve entities, cosine-similarity filtering to ensure semantic fidelity and diversity,
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and entity substitution from curated whitelists. The augmented corpus substan-
tially improved downstream BERT-based NER performance on petroleum technical
documents, evidencing the practicality of LLM-driven augmentation for metadata
extraction at scale.

Natural Language Processing (NLP) stands at the intersection of computer
science and linguistics, representing a domain within artificial intelligence aimed
at enabling computers to understand and process human language in a way that is
both meaningful and effective (LIDDY, 2001). This field integrates a diverse range of
computational techniques to analyze and represent text at various levels of linguistic
detail, striving to emulate human-like language understanding. As an active area
of research, traditionally NLP employs multiple layers of language analysis, each
contributing uniquely to the interpretation and generation of language, which finds
practical applications in various sectors (LIDDY, 2001). In the O&G industry, the
management of unstructured data, such as texts, images, and documents, is crucial,
with NLP and Machine Learning playing key roles. Research by ANTONIAK et al.
(2016) and CASTIÑEIRA et al. (2018) has explored the use of NLP to analyze risks
and drilling reports.

Complementing these efforts, GHARIEB et al. (2024) outline a roadmap for per-
sonalized, on-premises LLMs tailored to petroleum engineering and education. Their
pipeline benchmarks embeddings and chunking strategies for retrieval. Results indi-
cate that smaller, locally hosted LLMs can deliver competitive summarization and
knowledge-integration performance with reduced latency and lower operating costs.
Extending to drilling operations, YI et al. (2024) demonstrate a GPT-based sys-
tem with retrieval over a curated corpus spanning sensor logs, reports, after-action
reviews, and external well construction planning and real-time Q&A. Reported out-
comes include significant time savings in retrieving past incident context (e.g., stuck
pipe) and benchmarking parameters (e.g., lateral-section ROP).

2.2 Natural Language Processing

NLP is a broad field that covers various tasks to enable computers to process and
understand human language (JURAFSKY and MARTIN, 2008). These tasks, which
represent specific problems or applications, have been the focus of research for
decades, predating the recent surge in LLMs. They range from fundamental chal-
lenges like part-of-speech tagging to complex applications like machine translation.
This section explores two tasks particularly relevant to this dissertation: Q&A and
Text-to-SQL, both of which have been significantly advanced by recent developments
in the field.
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2.2.1 Q&A tasks

Q&A can be viewed from two complementary perspectives. From the organiza-
tional view, Q&A serves as a mechanism to facilitate knowledge transfer between
individuals (ISKE and BOERSMA, 2005). Platforms such as Stack Overflow illus-
trate how structured question-and-answer workflows support technical communities
(TREUDE et al., 2011). This understanding helps organizations design processes
that enhance knowledge transfer and learning.

From the artificial intelligence perspective, automated question answering is a
long-standing research area in NLP that aims to answer user queries automatically
from available evidence (documents, databases, or parametric model knowledge).
In specialized settings, domain-specific Q&A adds constraints such as terminology,
safety, and privacy. Recent work explores cost-efficient, domain-specific Q&A with
LLMs by optimizing retrieval and context selection (AREFEEN et al., 2024). In
the petroleum context specifically, applications have leveraged GPT-style models to
answer natural-language questions over proprietary corpora and operational docu-
ments (ECKROTH and GIPSON, 2023), aligning with the retrieval-and-generation
paradigm adopted in this dissertation. Together, these advancements motivate the
use of RAG pipelines for auditable Q&A in E&P environments.

2.2.2 Text-to-SQL tasks

Text-to-SQL tasks in the context of artificial intelligence involve the automatic trans-
lation of natural language questions or commands into structured SQL (Structured
Query Language) queries (QIN et al., 2022). This is an important area in NLP,
allowing users to interact with databases using plain language rather than needing
to know how to write complex SQL queries.

The arrival of advanced language models like GPT-3 and GPT-4 (OPENAI,
2023) has marked a significant leap in Text-to-SQL applications (SINGH et al.,
2023), demonstrating remarkable capabilities in handling these tasks. This can
be attributed to their extensive training on diverse datasets (DENG et al., 2021),
which include not only large amounts of text but also structured data like tables and
code, enabling the model to understand the intricate relationships between language
and data structures. The study by (DENG et al., 2023) introduces a pre-training
framework for text to SQL translation, emphasizing the alignment between text and
tables in Text-to-SQL tasks.
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2.3 Intelligent Agents

According to RUSSELL and NORVIG (2020), an agent is something that performs
actions. When it comes to computerized agents (in our case, AI-based), these agents
are expected to do more: operate autonomously, perceive the environment, persist
over time, adapt to changes, create, and strive to achieve goals. The agent program
implements the agent function.

RUSSELL and NORVIG (2020) present a taxonomy of agent programs that we
adopt here in increasing order of complexity:

(a) Simple reflex: act based solely on the current percept using condition–action
rules.

(b) Model-based reflex: maintain an internal state (a world model) to handle
partial observability.

(c) Goal-based: choose actions that achieve explicitly represented goals, enabling
lookahead and planning.

(d) Utility-based: select actions to maximize an expected utility over outcomes
when trade-offs exist.

(e) Learning/adaptive: improve performance over time by learning components
such as perception, model, or utility.

The appropriate design depends on the environment and task constraints. In this
work, a goal-based agent design was implemented to act toward achieving defined
objectives.

2.3.1 Multi-Agent Systems

A Multi-Agent System (MAS) extends the concept of a single agent to a collection of
agents that interact within a shared environment (GOKULAN and SRINIVASAN,
2010). A MAS is defined as a loosely coupled network of autonomous problem-
solving entities that collaborate to find solutions to problems that are beyond the
individual capabilities or knowledge of any single entity (FLORES-MENDEZ, 1999).

The structure of a MAS can vary, with different organizational paradigms such
as hierarchical structures or coalitions being employed depending on the application
(GOKULAN and SRINIVASAN, 2010). A practical example of a MAS architecture
is demonstrated in power system restoration, where a system can be composed
of multiple "bus agents" and a single "facilitator agent" (NAGATA and SASAKI,
2002). In this setup, each bus agent works to restore its local area by negotiating
with neighboring agents based on locally available information, while the facilitator
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agent manages the overall decision-making process, showcasing how a collection of
agents with simple, local strategies can cooperate to achieve a complex, global goal
(NAGATA and SASAKI, 2002).

2.4 Large Language Models

LLMs are advanced neural network-based models designed to understand and gen-
erate human-like text. They leverage the Transformer architecture introduced in
the seminal paper “Attention is All You Need” by VASWANI et al. (2017). This
architecture relies on self-attention mechanisms, allowing the model to weigh the
importance of different words in a sentence effectively.

In practice, contemporary generative LLMs are typically decoder-only Trans-
former models, stacking decoder blocks with causal self-attention to autoregressively
produce tokens. By contrast, widely used classifiers such as BERT adopt an encoder-
only configuration that produces contextualized representations for discrimination
tasks rather than generation (DEVLIN et al., 2018).

The emergence of LLMs has made it possible to understand and produce textual
information. These systems are expected to revolutionize various industries by sup-
porting complex decision-making processes. GPT models (OPENAI et al., 2023), in
particular, take advantage of its vast training data to provide human-like responses
(MOSSER et al., 2024), which can be highly beneficial in contexts requiring natural
language understanding and generation. The exponential growth in the size and ca-
pability of LLMs in recent years has been remarkable. Models like OpenAI’s GPT
series have shown significant advancements, moving from millions to hundreds of
billions of parameters, which gives them increasingly sophisticated natural language
understanding and generation. This advancement is illustrated in Figure 2.1. For
new models (released after jan/2025), including OpenAI’s o3 series and GPT-4.5,
Anthropic’s Claude 3.7 and 4, and Google’s Gemini 2.5 Pro, the exact parameter
counts have not been publicly disclosed.

However, the trajectory of LLM development in 2025 has signaled a shift in fo-
cus. While previous advancements were often marked by an exponential increase
in parameter counts, the latest generation of models emphasizes sophisticated rea-
soning capabilities over sheer size. This move away from parameter size as the
primary metric of progress underscores a new trend: enhancing the models’ ability
to perform complex, multi-step reasoning. This is evident in features like the private
chain-of-thought mechanisms in OpenAI’s models and the "extended thinking" mode
in Anthropic’s Claude series, indicating that language models are advancing through
more intricate cognitive architectures rather than just scaled-up data processing.

As highlighted by SINGH et al. (2023), the integration of LLM-based solutions,
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Figure 2.1: The evolution of LLMs.

such as conversational chatbots, offers an approach to optimizing operations across
various business segments, including drilling, completion, and production. SINGH
et al. (2023) uses LLMs models to extract, analyze, and interpret datasets, enabling
generation of insights and recommendations.

Despite its widespread impact, language models are not without its limitations.
In many industry-specific applications, the critical information required is often
proprietary, not shared with third parties, and thus absent from the training data
of these LLMs (MOSSER et al., 2024). This gap means that GPT models might
not have access to the most up-to-date or sensitive information needed for certain
tasks. Moreover, due to their probabilistic nature, LLMs can experience hallucina-
tions, producing confident yet incorrect or nonsensical responses based on user input
(OPENAI et al., 2023).

2.4.1 LLM applications

The proliferation of LLMs has led to a diverse array of applications that leverage
their ability to understand, generate, and process human language.

The expansion of the LLM application ecosystem is evident in the significant
market growth projections. For instance, one report projects the global LLM mar-
ket to grow from $5.62 billion in 2024 to $35.43 billion by 2030, with a compound
annual growth rate (CAGR) of 36.9% (GRANDVIEWRESEARCH, 2025). This
rapid expansion is indicative of the immense value and potential that organizations
across industries see in these technologies. The applications themselves are be-
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coming increasingly sophisticated, evolving from simple text generation to complex,
multimodal systems capable of processing and integrating text, images, and other
data formats (KADDOUR et al., 2023).

The spectrum of LLM-based applications is broad and continually expanding.
Early applications focused on tasks such as text summarization, translation, and
sentiment analysis. However, the current generation of LLMs powers a much wider
range of tools. These can be broadly categorized into several key areas. Conver-
sational AI, in the form of advanced chatbots and virtual assistants, represents a
significant segment of the market, enhancing customer service and user engagement
(GRANDVIEWRESEARCH, 2025). Content creation is another major application
area, where LLMs are employed to generate a variety of materials, from marketing
copy and social media posts to technical documentation and even creative writing
(LABS, 2025).

Furthermore, LLMs are being integrated into more specialized and high-stakes
domains. In the legal field, they assist with tasks like contract analysis and legal
research. The financial sector utilizes them for fraud detection and market analysis
(LABS, 2025). In software development, LLM-powered tools for code generation and
debugging are becoming increasingly prevalent, accelerating development cycles and
improving programmer productivity. A key innovation driving the utility of these
applications is the advent of techniques like RAG, which allows LLMs to retrieve
and incorporate information from external knowledge bases, thereby improving the
accuracy and relevance of their outputs (AI, 2025). The ongoing development of
multimodal LLMs is further pushing the boundaries of what is possible, enabling
applications that can understand and reason about the world in a more holistic
manner (KADDOUR et al., 2023).

2.4.2 RAG

RAG technique combines LLMs with information retrieval to generate accurate and
up-to-date responses, as introduced by LEWIS et al. (2020). It employs a search in a
database to find relevant information, overcoming the inherent limitations of LLMs
that rely solely on the prior knowledge embedded in the language model during
the training phase. With the ongoing evolution of information retrieval, which has
evolved from term-based methods to more semantic approaches leveraging deep
learning and large datasets to tackle more complex challenges.

A RAG consists of two main components: a retriever and a generator, as illus-
trated in Figure 2.2. The retriever is responsible for finding relevant information
from a knowledge base, and the generator uses that information to create a human-
like response.
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Figure 2.2: A diagram illustrating the RAG process.

As elucidated by LEWIS et al. (2020), RAG unites the strengths of pre-trained
parametric and non-parametric memory, using a dense vector index and a semantic
retriever. As demonstrated by LI et al. (2022) in their analysis, RAG is surpassing
traditional generative models in terms of performance across a variety of tasks.
The study provides a detailed survey on this topic, emphasizing the fundamental
concepts and its applicability in specific contexts.

New tools have been developed to facilitate the implementation of RAG so-
lutions. LIU et al. (2023) present a toolkit that integrates augmented retrieval
techniques into LLMs, including modules for query rewriting, document retrieval,
passage extraction, response generation, and fact-checking, enabling the creation
of more factual and specific responses. The recent study by ZHAO et al. (2023)
extends this horizon by examining the incorporation of multimodal knowledge into
generative models, exploring the integration of diverse external sources such as im-
ages, code, tables, graphs, and audio, to enhance the grounding context and improve
usability. It also explores potential future trajectories in this emerging field, marking
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a relevant contribution to the evolving narrative of RAG and its applications.

2.4.3 Multi-Agent Setup

As demonstrated by XI et al. (2023), the pursuit of Artificial General Intelligence1

(AGI) has significantly benefited from the development of LLM-based agents, ca-
pable of sensing, decision-making, and acting across diverse scenarios. His study
outline a foundational framework for such agents, consisting of brain, perception,
and action components, which can be customized for various applications including
single-agent scenarios, multi-agent systems, and human-agent collaboration. The
comprehensive survey underscores the crucial role of LLMs in moving towards AGI,
suggesting a promising horizon for operational efficiency and decision-making pro-
cesses in complex organizational settings (XI et al., 2023).

LI et al. (2024a) demonstrated that, through a sampling and voting method,
the performance of LLMs scales with the number of instantiated agents. Another
open-source framework is AutoGen (WU et al., 2023), that enables the creation of
LLM multi-agent applications, allowing for customization across various modes. It
supports diverse applications in fields such as mathematics, coding, and operations
research, demonstrating its effectiveness through empirical studies (WU et al., 2023).

2.5 Evaluation

2.5.1 Truthfulness

In the evaluation of RAG systems, ensuring the truthfulness of the generated output
is a primary concern. LIN et al. (2022) introduces a framework for this purpose.
The authors define a truthful answer as one that aligns with literal truth about
the real world. This is particularly relevant for RAG systems, which can retrieve
and incorporate information from vast and varied sources. An answer is considered
truthful if it does not assert any false statements, and informative if it provides
relevant information that addresses the user’s query.

In LI et al. (2023), the authors conducted an evaluation to determine the ef-
fectiveness of their proposed prompts on the performance of various LLMs. The
evaluation employed both automated standard experiments and human studies to
assess the impact of emotional stimuli on task performance, truthfulness, and re-
sponsibility.

In the first experiment of this study, human experts assessed each Q&A pair
based on the definitions:

1AGI is the ability of a machine to perform any intellectual task that a human can perform.
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• Truthfulness: a metric to gauge the extent of divergence from factual
accuracy, otherwise referred to as hallucination (LIN et al., 2021).

1=“The response promulgates incorrect information, detrimentally
influencing the ultimate interpretation”

2=“A segment of the response deviates from factual accuracy; how-
ever,this deviation does not materially affect the ultimate interpretation”

3=“The response predominantly adheres to factual accuracy, with
potential for minor discrepancies that do not substantially influence the
final interpretation”

4=“The response is largely in consonance with factual evidence, al-
beit with insignificant deviations that remain inconsequential to the final
interpretation”

5=“The response is in meticulous alignment with the facts, exhibit-
ing no deviations”

• Performance: encompasses the overall quality of responses, consider-
ing linguistic coherence, logical reasoning, diversity, and the presence of
corroborative evidence.

1 = “The response fails to address the question adequately”

2 =“The response addresses the question; however, its linguistic ar-
ticulation is sub-optimal, and the logical structure is ambiguous”

3 = “The response sufficiently addresses the question, demonstrating
clear logical coherence”

4 = “Beyond merely addressing the question, the response exhibits
superior linguistic clarity and robust logical reasoning”

5 = “The response adeptly addresses the question, characterized by
proficient linguistic expression, lucid logic, and bolstered by illustrative
examples”(LIN et al., 2021).

2.5.2 Precision, Recall, and F1-Score

Precision, recall, and F1-score are fundamental metrics for evaluating classification
tasks, particularly in scenarios with imbalanced datasets. These metrics provide a
more nuanced understanding of a model’s performance than accuracy alone.

In a binary confusion matrix, we denote: TP (True Positives), FP (False Pos-
itives), TN (True Negatives), and FN (False Negatives). The formulas below use
these standard abbreviations.

Precision measures the accuracy of positive predictions. It is the ratio of cor-
rectly predicted positive observations to the total predicted positive observations.
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A high precision relates to a low false positive rate.

Precision = TP
TP + FP (2.1)

Recall (or Sensitivity) measures the ability of the model to find all the relevant
cases within a dataset. It is the ratio of correctly predicted positive observations to
all observations in the actual class.

Recall = TP
TP + FN (2.2)

The F1-score is the harmonic mean of Precision and Recall. Therefore, this
score takes both false positives and false negatives into account. It is a good way to
show that a model has a good performance on both metrics.

F1-score = 2× Precision× Recall
Precision + Recall (2.3)

2.5.3 LLM-as-a-Judge

The LLM-as-a-Judge paradigm represents a significant shift in the evaluation of
NLP systems in general, using a language model as a scalable proxy for human
evaluators (LI et al., 2024b). This approach was developed to overcome the semantic
shallowness of traditional metrics like BLEU or ROUGE and the logistical challenges
of extensive human annotation (ZHENG et al., 2023). By providing a "judge" LLM
with a clear rubric and context, it can perform assessments of qualities like coherence,
relevance, and factual accuracy (LI et al., 2024b). This method has proven effective
for complex, open-ended tasks where simple string matching is insufficient, with
models like GPT-4 demonstrating over 80% agreement with human preferences in
benchmarking studies (ZHENG et al., 2023).

For evaluating RAG systems, the LLM-as-a-Judge framework can be adapted to
produce structured, quantitative assessments. In this application, the judge LLM is
tasked with comparing the RAG-generated answer against a ground-truth dataset.
By using a crafted prompt that defines the classification criteria, the judge can
systematically categorize each output with domain-tailored definitions: TP = a
claim is made and supported by the evidence; FP = a claim is made but not
supported by the evidence; FN = a claim is not made but is supported by the
evidence (it should have been made); TN = a claim is not made and not supported
by the evidence. In this domain, TN is less informative and not emphasized in the
analysis. This approach moves beyond subjective scoring towards a more objective
evaluation. The prompt used in this work is presented in the code in Appendix A.1.

The advantage of this methodology is its ability to translate qualitative judg-
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ments directly into a confusion matrix, allowing the calculation of standard metrics
such as precision (Equation 2.1), recall (Equation 2.2), and F1-score (Equation 2.3).
This process establishes a replicable pipeline for benchmarking the factual accuracy
of a RAG system at scale. While it is important to acknowledge the potential for
inherent biases in LLM judges (GU et al., 2025), studies show high correlation with
human-expert evaluations (LI et al., 2024b), making it a useful tool for iterative
development and system comparison.
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Chapter 3

First Experimental Evaluation
Cycle

This chapter describes the first experimental cycle of this research, as introduced
in Section 1.4.2, conducted to investigate the effectiveness of different LLM based
agent architectures. The primary objective is to address complex, domain-specific
queries within the field of well construction and maintenance. This initial cycle
serves as a foundational study, comparing single-agent and multi-agent systems to
generate empirical insights into their performance, cost, and inherent limitations.
The findings from this cycle will inform the more advanced, quantitative evaluation
performed in the second experiment.

Following the principles of DSR, this chapter is structured to clearly present the
research components. We will begin by defining the business context and the specific
problem this experiment aims to solve. Subsequently, we will describe the design of
the proposed technological solutions, referred to as artifacts. Finally, we will detail
the evaluation methodology, including the process for data set creation, the metrics
used for assessment, and a thorough analysis of the results.

3.1 Design Science Research Framework

To provide a clear and organized structure for this experiment, we adopt the DSR
framework. The key components of this research cycle are outlined as follows:

Context: The operational environment of the well construction department within
a major oil company, where efficient access to technical knowledge is critical.

Problem: The challenge faced by engineers and specialists in effectively query-
ing and retrieving accurate information from vast, unstructured, and domain-
specific knowledge bases (e.g., operational reports, lessons learned).
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Behavioral Conjectures: Our core supposition is that LLM-based agent systems
can improve the efficiency and accuracy of information retrieval for specialized
tasks, but that the choice of architecture (single-agent vs. multi-agent) will
have a measurable impact on performance and cost.

Theoretical Frameworks: This work is grounded in the theories of Intelligent
Agents, RAG, and multi-agent systems, as detailed in the Literature Review.

Proposed Artifacts: Two distinct LLM-based agent systems are proposed and
built:

• A Single-Agent Architecture.

• A Multi-Agent Architecture.

Evaluation: The artifacts are evaluated by a panel of domain experts who assess
the quality of their responses to a curated set of real-world queries. The
evaluation is based on predefined metrics for truthfulness, performance, and
cost.

3.2 Context and Problem Statement

3.2.1 Context

As established in the Introduction, this research is situated within the oil and gas
industry, a sector characterized by complex, expensive operations. This experiment
was carried out specifically within the well construction department of a major
oil company. In this environment, engineers and technical staff frequently need
to access specialized information from a variety of internal data sources, including
operational reports, learned lessons, and safety alerts. The efficiency and accuracy
of this information retrieval process directly impact operational decision-making,
safety, and cost-effectiveness.

The set of queries used to test the systems, listed in Appendix A.2, provides a
concrete exemplification of the problem space.

3.2.2 Problem

The central problem addressed in this experiment is the inefficiency of technical
knowledge management and data analysis in the well construction domain. Spe-
cialists often struggle to find precise answers to their queries, which are typically
buried in large volumes of unstructured or semi-structured documents. This leads
to time-consuming manual searches and the risk of overlooking critical information.

24



This experiment investigates two primary task categories that exemplify this
problem, as described in Section 2.2 and summarized here:

• Q&A Tasks: Require the system to answer complex technical questions by
synthesizing information from documents. For example: “How does the pres-
ence of silica in the composition of cement paste affect its thermal stability at
high temperatures?”

• Text-to-SQL Tasks: Require the system to query structured databases using
natural language. For example: “What was the longest-lasting NPT on rig
number 05?”

The set of queries used to test the systems, listed in Appendix A, provides a
concrete exemplification of the problem space.

3.3 Proposed Artifacts

To address the problem, we designed, built, and tested two distinct artifacts: a
single-agent solution and a multi-agent solution. Both are goal-based agents de-
signed to accurately respond to user queries by leveraging a suite of tools.

3.3.1 Artifact 1: Single-Agent Architecture.

In this work, a goal-based agent (RUSSELL and NORVIG, 2020) was implemented
with the goal of accurately responding to various queries. The agent operates within
an environment equipped with multiple tools for task-specific operations, as shown
in Figure 3.1, and interfaces with users to receive queries.

Figure 3.1: Schematic of the LLM-based agent interacting with an environment
containing tools for task-specific operations, and the Human Agent interface for
user interaction and feedback.

Initially, a configuration of agents was implemented as described in Figure 3.2
using AutoGen Framework (WU et al., 2023) with an architecture that allows infor-
mation retrieval and user interaction. This system consists of two agentic setups:
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Figure 3.2: Chat setup with one User Proxy (WU et al., 2023) and one Assistant.

• User Proxy: represents the interface with the user and with tools to access
external databases. The modular nature of the tools allows the User Proxy
to be customized and expanded based on the variety of data sources and the
specific requirements of the application domain.

• Agent: powered by LLMs such as GPT-4 and GPT-3 (the specific model is
configurable), is the analytical engine of the system. This agent interprets the
queries received from the User Proxy and formulates responses.

For each question in the data set, the agent’s decision-making process is executed
as described in Figure 3.3, initially selecting the appropriate tool to respond to a
query and, finally, compiling the retrieved information to provide a final answer.

Figure 3.3: Decision process of the agent.

3.3.2 Artifact 2: Multi-Agent Architecture

The second artifact is a multi-agent system where responsibility is distributed among
several specialized agents, coordinated by a Chat Manager, as shown in Figure 3.4.
This architecture is designed to handle queries by routing them to the agent best
equipped for the task. As depicted in the decision process in Figure 3.5, a “speaker
selection” step determines the most suitable agent to act at each turn, promoting a
more focused and contextualized approach to problem-solving.
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Figure 3.4: Chat setup with one Chat Manager and a group of LLM agents.

Figure 3.5: Multi-agent decision process.

3.3.3 Agent’s Tools

In this experiment, three tools were considered in the decision-making process:

• Tool 1 - Learned Lessons Search: a tool to search for learned lessons that
may be relevant to the query.

• Tool 2 - Employee Search: functionality that allows the search for infor-
mation related to collaborators of an organization.

• Tool 3 - NPT SQL Query (text-to-sql): Interface for executing SQL
queries on a database of operational NPTs.

There is also a pathway that allows the agent to provide a direct response,
without the need to resort to other tools, presumably used when the LLM already
possesses the necessary information.

3.4 Evaluation

The evaluation phase was designed to assess and compare the performance of the
two proposed artifacts. This section details the methodology, the data set creation

27



process, the metrics used, and the final results.

3.4.1 Evaluation Methodology

The evaluation was conducted by presenting a standardized set of questions to both
the single-agent and multi-agent systems, using both GPT-3.5-turbo and GPT-4
models. The responses generated by each configuration were then collected and
anonymized.

A panel of three specialist engineers from the well construction department was
tasked with analyzing the generated answers. Each specialist independently scored
the responses based on the metrics described in Section 3.4.3. The final score for each
response was calculated by averaging the scores from the three experts, ensuring a
robust and comprehensive assessment.

To provide a clear visual representation of the experimental workflow, a Busi-
ness Process Model and Notation (BPMN) diagram is presented in Figure 3.6.
This diagram illustrates the step-by-step process, from query submission to expert
evaluation.
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Figure 3.6: Experimental workflow.
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3.4.2 Dataset Creation

A critical component of this evaluation is the test dataset. The dataset was metic-
ulously created to reflect authentic information needs within the well construction
domain. The process was as follows:

Source Selection We identified three primary internal data sources: a database of
Operational Learned Lessons, a structured database of Non-Productive Time
(NPT) incidents, and a Collaborator Finder tool, as described in Section 1.1.1.

Document Sampling A random sample of documents and records was selected
from each data source to ensure broad coverage of topics and scenarios.

Query Formulation This process was performed by the author, leveraging do-
main expertise and collaboration with colleagues to ensure the questions were
realistic, relevant, and challenging.

Dataset Composition In total, a dataset of 33 unique queries was created.

This approach to dataset creation, grounded in author experience and real-world
documents, provides a valid basis for evaluating the artifacts. Table 3.1 presents a
sample of the queries formulated for the experiment.

The dataset used for the experiments in this dissertation consists of proprietary
and confidential information. In accordance with information security policies and
confidentiality agreements, the raw data and source documents cannot be made
public. The access services to these sources, implemented via APIs , are likewise
private and protected

3.4.3 Evaluation Metrics

To ensure a comprehensive assessment, the expert panel evaluated the artifacts’
responses using the following metrics, which are based on the definitions presented
in Section 2.5:

• Truthfulness: A 1-5 Likert scale score measuring the factual accuracy of the
response and the extent of any divergence from the ground truth. A higher
score indicates a more factually correct answer with no hallucinations.

• Performance: A 1-5 Likert scale score assessing the overall quality of the
response, including its linguistic coherence, logical structure, relevance, and
conciseness.
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• LLM Cost: A quantitative metric representing the financial cost in US dollars
(USD) to generate a response for a given query using the OpenAI API. This
reflects the computational expense and efficiency of each configuration. While
other costs exist (development, infrastructure, maintenance), the API cost
is a primary operational expenditure that scales directly with usage and is
therefore a key metric for evaluating the economic viability of the artifacts, as
established in our DSR framework.

To illustrate the application of the first two metrics, an example of an expert
evaluation is provided in Table 3.2. The table shows the responses of different
models to the query: "How does the presence of silica in the composition of cement
paste affect its thermal stability at high temperatures?". It details the scores for
Truthfulness and Performance, along with the specialists’ comments that justify the
ratings.
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Task
cate-
gory

Question

Q&A

How does the presence of silica in the composition of cement paste affect its thermal
stability at high temperatures?
What are the main challenges and risks associated with through tubing plug and aban-
donment in highly deviated wells?
Give me all the information about employee BFD1.
Who are the employees of the POCOS/EP/SASD team?
How many advisors do we have in the POCOS/SPO department?
Who are the advisors in the departments belonging to the POCOS/EP department?
What data sources do you have?
What functions do you have?
How does well inclination affect the effectiveness of cementing during through-tubing
plugging?
What can cause difficulty in locking the handling cap of the coiled tubing BOP?
What can cause anomalous behavior of the AutoTrak with GunDrill during drilling?
What can be done to optimize the assembly of COP/COI for parallel movement of the
JRC/THRT?
What strategies can be adopted to improve the quality of cementing in highly inclined
wells during through-tubing plugging?
What are the alternatives to accelerate the curing time of cement slurry without com-
promising its integrity in high-temperature conditions?
What are the risks associated with the improper substitution of cement with silica for
pure cement in surface casing cementations in high-temperature wells?
What was the strategy adopted to allow the passage of eccentric and/or large-diameter
elements through the BOP quickly and without wedging the string with these elements
inside the BOP?

Text-to-SQL

What was the longest-lasting NPT on rig number 05?
How many NPTs occurred on rig number 06 during August 2023?
What were the 5 most common abnormalities across all rigs?
What were the abnormalities that occurred on all rigs during the week of September 14th
to 20th, 2023?
Which rigs had the most lost time in 2023? Give me a table with the rigs and the sum
of hours.
Which rigs had the most lost time in the first half of 2023?
What were the latest abnormalities that occurred on the SS-70 rig?
What was the peak of abnormality occurrences on the NS-52 rig?
What was the total lost time in hours for abnormalities whose description mentions the
term "Coiled Tubing"?
What was the total lost time in hours on the NS-38 rig in 2023?
What was the total time lost due to equipment failure on the NS-38 rig in 2023?
How many abnormalities occurred on the NS-31 rig during July 2023?
How many hours of lost time were caused by human error on the NS-47 rig in 2023?
How many hours of lost time occurred on the MS-20 rig during June 2024?
How many hours of lost time occurred on the NS-35 rig in 2024?

Table 3.1: Queries used in first cycle.
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Table 3.2: Query example with inputs, outputs, and human expert evaluations.
Input query Model Setup Final output Truth.fulness Perfor-mance Specialist Comments

How does the
presence of silica
in the composi-
tion of cement
paste affect its
thermal stability
at high tempera-
tures?

GPT-
3.5-
turbo

Single-
Agent

The presence of silica in the composition of cement paste can affect
its thermal stability at high temperatures due to some characteristics
of silica. Silica is an inorganic material that has a stable crystalline
structure at high temperatures. When exposed to high temperatures,
the silica present in the cement paste can undergo structural trans-
formations, resulting in changes in the properties of the paste.
One of the main changes that can occur is the thermal expansion of the
cement paste due to the formation of unstable silica compounds. This
thermal expansion can lead to cracks and fissures in the structure,
compromising the material’s integrity and stability.
Moreover, the presence of silica in the composition of cement paste
can affect the material’s thermal resistance. Silica has low thermal
conductivity, which can lead to a reduced ability of the cement to
withstand high temperatures. This can result in a decrease in the
material’s strength and, consequently, a reduction in its thermal sta-
bility.
In summary, the presence of silica (...)

4 5

Created a section that is irrel-
evant to the question: "More-
over, the presence of silica
in the composition of cement
paste can affect the material’s
thermal resistance. (...)"

Multi-
Agent

The presence of silica in the composition of cement paste has a positive
effect on thermal stability at high temperatures. Silica is added to
cement to mitigate the retrogression of cement strength when exposed
to temperatures above 230°F (110°C). Deep wells or those with a high
geothermal gradient may require the use of silica cement to ensure the
thermal stability of the paste. The use of silica cement is particularly
important in surface casing cementing, where the temperature can
exceed the critical limit. (...)

2 2
Retrieved an unrelated Lesson
Learned on the subject (about
plugs).

GPT-4 Single-
Agent

The presence of silica in the composition of cement paste increases
thermal stability, especially at high temperatures. Silica is used to
transform the cement into a refractory material, capable of withstand-
ing extreme conditions.
The cement (...).
However, (...).

3 4
Although it is true, the item on
the side is not relevant to the
question: "However, it is im-
portant to note that (...)."

Multi-
Agent

Silica is added to cement at a ratio of 35% by weight of cement to
mitigate the retrogression (loss of compressive strength) of the cement
in the well when subjected to temperatures above 230ºF (110ºC). (...)

5 4
Cited an unrelated (but true)
Lesson Learned about plugs,
Lesson Learned LA7005.
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3.4.4 Results

This section provides an analysis of the data collected during the first experimental
cycle. The aggregated results are presented in Table 3.3, followed by a discussion
of each evaluation metric established in our DSR framework: Truthfulness, Perfor-
mance, and LLM Cost.

Table 3.3: Results on Q&A and Text-to-SQL tasks, including standard deviation
(Std). The best metrics are highlighted with bold and underline. The second
best are highlighted with bold.

Task Single-Agent Multi-Agent
Model LLM

Cost
Truth. Std Perf. Std LLM

Cost
Truth. Std Perf. Std

Q&A
GPT-3.5-
turbo

0.005 2.94 1.48 3.94 1.09 0.02 4.09 1.22 3.82 0.98

GPT-4 0.12 3.88 1.41 4.06 1.30 0.45 4.57 0.79 4.43 0.79
Text-to-
SQL
GPT-3.5-
turbo

0.009 4.13 1.41 4.44 1.03 0.02 4.29 1.20 4.29 1.33

GPT-4 0.10 4.56 0.96 4.63 0.81 0.51 3.20 1.99 3.70 1.89

The comparative analysis between single and multi-agent setups for RAG, us-
ing GPT-3.5-turbo and GPT-4 models, revealed insights regarding the metrics of
truthfulness, performance, and costs of the language model.

Truthfulness

In assessing the truthfulness metric, significant differences are noted between the sin-
gle and multi-agent settings in both Q&A and Text-to-SQL tasks. The results are
illustrated in Figures 3.7 and 3.8. For Q&A tasks, GPT-4 in a multi-agent configu-
ration significantly exceeded the performance of the single-agent with a truthfulness
score of 4.57 compared to 3.88. The GPT-3.5-turbo model showed distinct results
between the two configurations, with the multi-agent surpassing the single-agent
with scores of 4.09 and 2.94, respectively. In terms of Text-to-SQL queries, a differ-
ent outcome was observed. GPT-4 single-agent achieved a score of 4.56, while the
same model in the multi-agent configuration obtained 3.20, highlighting a limitation
for the multi-agent in this task. Conversely, the GPT-3.5-turbo maintained a more
balanced performance between configurations, scoring 4.29 for multi-agent and 4.13
for single-agent.
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Figure 3.7: Truthfulness and standard
deviation in Q&A tasks by LLM model
and agent configuration.

Figure 3.8: Truthfulness and standard
deviation in Text-to-SQL tasks by LLM
model and agent configuration.

Performance

The evaluation of LLM performance (LI et al., 2023) in the tasks of Q&A and
Text-to-SQL reveals trends which are similar to the truthfulness results. For Q&A
tasks, the multi-agent setup shows a performance boost compared to the single-
agent setup. In particular, the multi-agent GPT-4 achieves a performance score of
4.43, which is higher than the single-agent GPT-4 score of 4.06. This pattern is
consistent with the GPT-3.5-turbo, where the multi-agent system also surpasses the
single-agent system, scoring 3.82 and 3.94, respectively. These findings emphasize
the effectiveness of the multi-agent approach in handling technical user queries.

Figure 3.9: Performance and standard
deviation in Q&A tasks by LLM model
and agent configuration.

Figure 3.10: Performance and standard
deviation in Text-to-SQL tasks by LLM
model and agent configuration.

LLM Cost

Language model services are typically composed by a values per token. For instance,
GPT-4 model costs US$30.00 (input) and US$60.00 (output) per 1 million tokens
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received and sent, respectively. The single-agent architecture demonstrated substan-
tially lower costs for both Q&A and Text-to-SQL tasks compared to the multi-agent
setup as shown in Figure 3.11. For instance, the average cost of the GPT-4 model
(OPENAI et al., 2023) for a Q&A task was $0.12 per processed question for the
single-agent, while the multi-agent recorded an average cost of $0.45. This trend of
higher costs for the multi-agent architecture was also maintained for Text-to-SQL
tasks, with an average cost of $0.51 for the multi-agent architecture in contrast to
$0.10 for the single agent. The higher token count and cost for multi-agent setting
is due to the inclusion of intermediate calls, for example, when the "Agent Selector"
needs to decide which agent to pass the turn to. All the message history is passed
to the LLM at this stage, substantially increasing the number of tokens submitted
and response time.

Figure 3.11: Average LLM costs and Truthfulness per completed task according to
setup and model.

3.4.5 Discussion

The comparison between single and multi-agent systems revealed significant differ-
ences in terms of performance and cost:

General Performance.

The results indicate that for Q&A tasks in the context of O&G, truthfulness measure
was 28% higher with the multi-agent architecture compared to single. However,
for Text-to-SQL tasks, this trend was inverted, where the single-agent scored 15%
higher.

These findings suggest that for Q&A tasks, the multi-agent setup may be more
advantageous in terms of providing truthful information, particularly when utilizing
the more advanced GPT-4 model. Conversely, in Text-to-SQL tasks, the GPT-4
model in a single-agent configuration proved more effective. This might imply that
the added complexity of managing multiple agents in some tasks does not necessarily
lead to improved performance in responses, underscoring the importance of carefully
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selecting the agent configuration based on the task type and specific features of the
language model used.

Cost-Performance Analysis.

While the multi-agent system shows higher truthfulness in Q&A tasks, it is crucial
to consider the associated costs. To provide a clearer comparison, let us consider the
score/cost ratios. For Q&A tasks using GPT-4, the single-agent configuration yields
a ratio of 32.33 truthfulness points per dollar, compared to 10.16 for the multi-agent
setup. This indicates that while the multi-agent system shows a 17.8% improvement
in truthfulness, it comes at a 275% increase in cost.

This trade-off highlights an important implication for any organization consid-
ering the adoption of these technologies. The optimal architecture is not universal;
it is highly dependent on specific task requirements and budget constraints. This
reality underscores the necessity of conducting a preliminary, cost-performance eval-
uation. Rather than simply selecting a model, decision-makers must first perform a
targeted analysis to establish a cost-benefit threshold. Our work not only provides
initial data for the O&G domain but also demonstrates a foundational methodol-
ogy for this evaluation process, which ultimately motivated the more rigorous and
quantitative approach of our second experimental cycle.

Model Performance Variations.

Interestingly, our results show that GPT-3.5-turbo outperforms GPT-4 in certain
tasks, particularly in the Text-to-SQL multi-agent configuration, despite GPT-4’s
larger size and more extensive training. This unexpected performance could be at-
tributed to several factors. First, GPT-3.5-turbo may have undergone more specific
fine-tuning for structured query tasks, allowing it to excel in Text-to-SQL scenarios.
Additionally, GPT-3.5-turbo’s training data might be more recent or more relevant
to the specific domain of our study. Another possibility is that the smaller model
size of GPT-3.5-turbo allows for faster processing and more efficient handling of the
multi-agent setup, resulting in better performance in some contexts. Additionally,
given the observed standard deviations, part of this difference may be attributable
to statistical noise rather than a systematic advantage.

However, it is important to note that GPT-4, when used in a multi-agent setup,
demonstrated more consistent truthfulness and performance, as evidenced by its
reduced standard deviation in results. This consistency can be particularly ad-
vantageous in applications where reliability and accuracy are critical. Multi-agent
systems have the advantage of maintaining separate contexts for different aspects
of a task (LANGCHAIN, 2025a). This compartmentalization can lead to better
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handling of complex, multi-faceted queries, as each agent can focus on its specific
context without being overwhelmed by irrelevant information. However, this advan-
tage may be offset in tasks like Text-to-SQL, where maintaining a unified context of
the database schema and query structure is crucial, possibly explaining the better
performance of single-agent setups in this task. Furthermore, the multi-agent ar-
chitecture inherently involves multiple stages of information processing, which can
serve as natural filtering mechanisms. As information passes from one agent to an-
other, irrelevant or low-quality data may be naturally filtered out, leading to more
refined and accurate final outputs. This could explain the superior performance in
filtering irrelevant information observed in multi-agent setups.

Economic Efficiency.

The multi-agent architecture incurs significantly higher costs compared to the single-
agent system, primarily due to additional intermediate calls to the language model
and multiple iterations between agents for action planning. Also, the cost differences
between using GPT-4 and GPT-3.5-turbo are substantial, with GPT-4 being 20
times more expensive (in early 2024). .

The average cost per query for each configuration is presented in Table 3.4. These
figures highlight the direct cost implications of the chosen architecture and model.

Table 3.4: Average LLM Cost Per Query (USD). Values from early 2024.
Configuration Cost per Query
Single-Agent (GPT-3.5-Turbo) $0.0068
Single-Agent (GPT-4) $0.1095
Multi-Agent (GPT-3.5-Turbo) $0.0197
Multi-Agent (GPT-4) $0.4896

To illustrate the financial implications of adopting different models and archi-
tectures, we estimate the annual costs for a large company with 40,000 knowledge
workers. Our calculations are based on an average of 5 queries per worker per day,
over 250 working days per year. These estimates assume homogeneous usage pat-
terns; they do not account for variations in workload, query complexity, or adoption
levels across different knowledge worker roles or departments.

Under these assumptions, the total annual query volume is 50 million (40,000
workers × 5 queries/day × 250 days). For a single-agent configuration, this results in
an annual cost of approximately $337,843 for GPT-3.5 and $5.47 million for GPT-4.

In a multi-agent architecture, the costs increase substantially, escalating to ap-
proximately $986,631 for GPT-3.5 and $24.48 million for GPT-4. These estimates
underscore the significant financial trade-offs when adopting a multi-agent system,
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which, while potentially offering performance benefits, comes with a considerable
increase in LLM operational costs.

While multi-agent systems and more advanced models like GPT-4 offer improve-
ments in performance, the economic efficiency, as measured by truthfulness per
dollar, may favor single-agent systems and less costly models like GPT-3.5-turbo,
depending on the specific application and budget constraints.

It is important to note that, as of July 2025, the landscape of LLMs has evolved
substantially. The emergence of more efficient models, has led to a significant de-
crease in API’s costs. This suggests that the financial trade-offs discussed previously
may no longer be as pronounced, and that high-performance multi-agent systems
could become economically viable much sooner than anticipated.

Challenges and Limitations

During the evaluation of the agents, several challenges and limitations were identi-
fied.

Contextualization and Interpretation. In many cases, the single-agent
solution had difficulty understanding the context of the question. For example, a
question about cementing was interpreted in the context of the construction industry,
a theme to which the language models were more exposed during the training phase.
However, the multi-agent structure, with its well-defined roles, better understood
the questions and showed superior performance in Q&A tasks, corroborating the
findings of (LI et al., 2024a).

Filtering Irrelevant Information. The agent often receives irrelevant docu-
ments along with important ones in the prompt context, and it is up to the LLM to
ignore these. For example, when asked about alternatives to accelerate the curing
time of cement paste without compromising its integrity at high temperatures, the
RAG system retrieved a document that included information about batch cementing
to ensure homogeneity during manufacturing and pumping. While this information
is true, it was not relevant to the specific question asked. In this aspect, the multi-
agent solution performed better at discarding such irrelevant information, focusing
more accurately on the task at hand. Other possible solutions include improving
the accuracy of semantic search by adjusting a minimum threshold for similarity
measures or through re-ranking techniques such as those proposed by (CARRARO,
2024) and (SUN et al., 2023).

Hallucination. During the evaluation of our system, we encountered instances
where the agent produced hallucinated information instead of utilizing the appropri-
ate tool to retrieve accurate data, as in (BILBAO et al., 2023). For example, when
asked, "How many anomalies occurred on rig number 05 during August 2023?" the
agent was expected to use the Text-to-SQL tool to query the database. However,
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it bypassed this tool and generated a fabricated response, stating that 5 anomalies
occurred, along with detailed descriptions of fictional events. The correct answer,
as retrieved from the database, was that 7 anomalies occurred. This hallucina-
tion likely resulted from the agent’s reliance on its internal knowledge rather than
external data retrieval.

In terms of hallucination statistics, our analysis revealed that for Q&A tasks,
hallucinations occurred in 9.6% of cases and 3.8% for partially hallucinated. In
contrast, Text-to-SQL tasks exhibited a lower hallucination rate, with only 3.6%
of responses containing hallucinated information and 96.4% being accurate. These
findings highlight the variation of susceptibility to hallucination in different types
of tasks, highlighting the need for targeted strategies to mitigate this problem.

Industry Jargon: Specifically analyzing the activity of drilling and completion
of offshore wells, the main challenge is the inherently complex and technical nature
of the data involved. There were instances of incorrect interpretation of information,
likely due to the use of terms, expressions, and themes specific to well construction,
to which the language model had little or no exposure during training phase. A
possible solution is the implementation of specialized models, which has been pointed
out in gray literature as a trend for the coming years (SHAH, 2024; MEENA, 2023;
GHOSH, 2023).

Tools vs. Performance: It was identified during the experiments that agents
with a high amount of tools showed a decline in overall performance. This can be
attributed to the added context to the prompts. As the context length increases,
the model’s ability to accurately interpret and respond diminishes. This is a limi-
tation of current language models, where longer contexts can lead to a dilution of
relevant information and increased difficulty in maintaining coherence and accuracy.
This conclusion is currently qualitative, as these metrics were not addressed in this
experiment.

Queries Involving Proper Names: In queries involving people’s names, it
was not possible to retrieve relevant documents using semantic search. For exam-
ple, when asked to identify the employee associated with a specific key and list
knowledge items they registered in the system, the LLM incorrectly attributed such
documents to the wrong author. This highlights the difficulty in accurately retriev-
ing information based on proper names, which can be complicated by variations in
accentuation, abbreviation, and formatting. A potential solution to be explored
is the use of Self-Query Retriever (LANGCHAIN, 2023), implementing a hybrid
search with metadata filters (including proper names) and semantic retrieval of the
rest of the query. It is also suggested, in these cases, to use the (LEVENSHTEIN,
1966) distance to handle possible variations in the spelling of names. This approach
could improve the accuracy of retrieving documents related to specific individuals,
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ensuring that the correct information is associated with the right person.

Practical Implications.

The findings from our study have significant practical implications for the O&G
sector, and potentially for other industries characterized by complex and technical
data environments:

• Enhanced Decision-Making Support: Our results indicate that multi-
agent systems provide a 28% higher truthfulness measure in Q&A tasks. This
can be particularly beneficial for decision-making in well engineering, where
accurate and truthful information is critical. Implementing multi-agent sys-
tems in decision-making processes can lead to more reliable and informed
decisions, thereby reducing the risk of errors and enhancing operational safety
and efficiency.

• Balancing Performance and Economic Efficiency: While multi-agent
systems offer superior performance in terms of truthfulness, they come with a
cost that is 3.7 times higher on average compared to single-agent systems. This
highlights the importance of a strategic approach in selecting agent configura-
tions based on specific tasks and budget constraints. A detailed cost-benefit
analysis reveals that for Q&A tasks using GPT-4, the single-agent configura-
tion yields a ratio of 32.33 truthfulness points per dollar, compared to 10.16
for the multi-agent setup. While the multi-agent system shows a 17.8% im-
provement in truthfulness, this comes at a 275% increase in cost. The efficiency
varies significantly by task type; in Text-to-SQL tasks, the GPT-4 single-agent
outperforms the multi-agent by 42.5% in truthfulness while costing 80.4% less.

• Reflection and Critic Agents: A promising approach to enhance the per-
formance of these agents is the use of reflection (SHINN et al., 2023), a method
where agents verbally reflect on task feedback signals and maintain this reflec-
tive text in an episodic memory buffer to improve decision-making in subse-
quent trials. Critic agents are a way to implement reflection in a multi-agent
setup. This type of agent is challenging to apply in Q&A tasks over private
technical data, as commercial LLMs (OpenAI, Google Bard, and others) have
not been deeply trained in the domain and struggle to provide relevant and
precise critiques, reinforcing the trend toward increased use of domain-specific
models (SHAH, 2024; MEENA, 2023; GHOSH, 2023).

• Task-Specific Agent Configuration: The study highlights that the com-
plexity of managing multiple agents does not always lead to better perfor-
mance. In some cases, a single-agent setup might be more effective. This
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insight can guide the development and deployment of AI systems, ensuring
that the configuration of agents is tailored to the specific requirements of the
task, thereby optimizing both performance and cost.

• Potential for Broader Application: The insights gained from this study
are not limited to the O&G sector but can be applied to other industries with
similar technical complexities, such as aerospace, pharmaceuticals, and renew-
able energy. By adopting multi-agent systems in these industries, organiza-
tions can improve decision-making, knowledge management, and operational
efficiency, driving innovation and competitiveness.

Future Directions.

This work indicates possible pathways for enhancing RAG architectures in O&G
sector.

• Enhancement of IR Semantic Techniques: There is a critical need to de-
velop more sophisticated semantic search technologies. Future efforts should
focus on enhancing the precision of information retrieval by filtering out irrel-
evant content more effectively. This will ensure that agents can provide more
accurate and contextually appropriate responses, crucial for technical domains
such as O&G.

• Development of Domain-Specific Models: Specialized models tailored
specifically to the O&G and other domains, such as biomedical engineering
(PAL et al., 2024), could significantly improve the handling of specific jargon
and complex technical data, while reducing LLM costs (AREFEEN et al.,
2024). Future research should aim to develop and train these models to better
understand and interpret the unique language and data types found in O&G,
enhancing the overall accuracy of agent responses.

• Optimization of Tool Use in Agent Performance: The relationship be-
tween the quantity of tools available to an agent and its performance needs
further exploration. Future studies should quantify the impact of tool avail-
ability on agent efficacy and efficiency, aiming to optimize tool use without
overwhelming the agent or diluting performance quality.

• Integration of Advanced Name Recognition Techniques: Queries
involving proper names pose a significant challenge in semantic search.
Integrating advanced retrieval techniques, such as Self-Query Retrievers
(LANGCHAIN, 2023) and (LEVENSHTEIN, 1966) distance algorithms, could
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improve the handling of these queries. Future research should focus on en-
hancing name recognition capabilities to ensure that agents can accurately
retrieve and utilize correct information, especially in scenarios where precision
is paramount.

• Extension to Other Complex Domains: The potential applications of
multi-agent systems are not limited to the O&G sector. Future research should
explore the adaptation and implementation of these systems in other complex
and technical domains, such as aerospace, pharmaceuticals, and renewable
energy. Investigating how these systems can support decision-making in these
areas will provide valuable insights into their versatility and adaptability.

• Hybrid Model Experimentation: Combining the strengths of single and
multi-agent systems could yield significant benefits. Future directions should
include experimenting with hybrid models that integrate the robustness and
depth of multi-agent interactions with the simplicity and efficiency of single-
agent systems. This hybrid approach could potentially offer a balanced solu-
tion, maximizing performance while managing costs and complexity.

By pursuing these directions, future research can significantly advance the de-
velopment of multi-agent systems, not only enhancing their application in the O&G
sector but also expanding their utility across various technologically intensive activ-
ities.
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Chapter 4

Second Experimental Evaluation
Cycle

This chapter describes the second experimental cycle of this research, building upon
the findings of the first cycle detailed in Chapter 3. The rapid evolution of generative
AI frameworks and models, along with the insights gained previously, prompted a
more advanced and rigorous evaluation. This second phase employs non-agentic
workflows as a baseline, introduces a more quantitative evaluation methodology, and
leverages an automated assessment process based on the LLM-as-a-Judge concept
(GU et al., 2025). It’s use was driven by the sheer volume of responses requiring
evaluation. With four configurations, two models, and three executions for each of
the 33 questions, a total of 792 responses were generated. Manually assessing this
volume of data would have been impractical. Furthermore, previously used metrics
like ‘truthfulness‘ had become less critical. This metric was highly relevant when
models frequently hallucinated, a problem that is far less prevalent in the current
generation of LLMs, shifting the focus to precision and recall of factual information.

4.1 Design Science Research Framework

This second experimental cycle adheres to the Design Science Research (DSR)
methodology, focusing on refining the artifacts and evaluation based on the out-
comes of the first cycle.

Context The operational environment of well construction engineering, where prac-
titioners require efficient and reliable access to vast amounts of technical and
HSE-related information.

Problem The first experimental cycle revealed several limitations, including the
subjective nature and scalability issues of expert-based evaluation, the need
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to compare agentic systems against simpler non-agentic baselines, and the
challenge of ensuring consistent performance. This second cycle addresses the
problem of developing a more robust, scalable, and objective method for eval-
uating and comparing different LLM-based architectures for domain-specific
Q&A.

Proposed Artifacts Four distinct architectures were designed and implemented
to compare different strategies for information retrieval and reasoning:

• A non-agentic Linear-Flow RAG pipeline.

• A non-agentic Linear-Flow with a Router to direct queries.

• A Single-Agent architecture, refined from the first experiment.

• A Multi-Agent Supervisor architecture for distributed reasoning.

Evaluation The artifacts are evaluated using an automated pipeline. An LLM-as-
a-Judge assesses the generated answers against a ground-truth dataset. The
evaluation is based on quantitative information retrieval metrics: Precision,
Recall, and F1-Score.

4.2 Context and Problem Statement

4.2.1 Context

As established in the previous chapters, this research is situated within the oil
and gas industry, specifically in the domain of well construction and maintenance.
Engineers and specialists in this field must navigate a complex information land-
scape, drawing from operational reports, HSE alerts, and documented best practices
(Learned Lessons) to make critical decisions. The effectiveness of these decisions
hinges on the speed and accuracy with which relevant information can be retrieved
and synthesized.

4.2.2 Problem

The first experimental cycle confirmed the potential of LLM-based agents but also
highlighted key challenges. The manual, expert-led evaluation process was time-
consuming and difficult to scale. Furthermore, the performance differences between
single and multi-agent systems suggested that a more granular analysis was needed,
including a comparison with non-agentic RAG workflows to establish a performance
baseline. Therefore, the central problem for this second cycle is to design and execute
a more rigorous, automated, and scalable evaluation to definitively compare the
efficacy of various agentic and non-agentic architectures in this specialized domain.
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4.3 Proposed Artifacts

To address the research problem, four distinct artifacts were developed, representing
a spectrum of complexity from simple sequential pipelines to collaborative multi-
agent systems.

4.3.1 System Architecture Overview

The experimental system was implemented using LANGCHAIN (2025b) and LANG-
GRAPH (2025), frameworks specialized in language model orchestration. This mod-
ular design allows for the systematic and reproducible evaluation of different com-
ponents and workflows. Key layers of the architecture include:

• Experiment Orchestration: Manages the execution loop, iterating through
all combinations of questions, models, and setups.

• Agent Workflow Frameworks: Defines the logic for each of the four pro-
posed artifacts using LangGraph to create cyclical graphs for agentic behavior.

• Tool Integration: A standardized interface providing agents with access
to external knowledge sources. This layer enables consistent semantic search
over domain-specific vector stores, ensuring that performance differences are
attributable to architectural choices rather than variations in data access.

• Prompt Engineering: A library of system messages and prompt templates
designed to guide the LLM’s reasoning process for each specific task within
the workflows.

• State Management and Logging: Captures the complete execution trace
of each run, including intermediate steps, tool calls, and final outputs. This
observability is essential for understanding not just the final output, but the
process by which each architecture arrived at its answer.

4.3.2 Artifact 1: Linear-Flow

The Linear-Flow architecture represents the simplest non-agentic RAG design,
serving as a performance baseline. As shown in Figure 4.1, user input is processed in
a strictly sequential manner. The user’s query is handled by a single LLM step, which
contains all the instructions needed to generate search queries for every available
tool.

Because the instruction prompts for all tools are aggregated into a single call,
the resulting context for the LLM becomes notably extensive and complex. While
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Figure 4.1: Linear-Flow architecture. PTn indicates the prompt for Tool n.

this approach is straightforward to implement, its primary drawback is the potential
for performance degradation as the context length increases, which can dilute the
model’s focus and lead to less precise retrieval queries.

4.3.3 Artifact 2: Linear-Flow with Router

The Linear-Flow with Router paradigm (Figure 4.2) extends the basic pipeline
by introducing a routing mechanism to create a descentralized, non-agentic work-
flow. This architecture first directs a user’s question to a router node, which is
a preliminary LLM call tasked with analyzing the query and determining the most
appropriate tool or sequence of tools to use.

Figure 4.2: Linear-Flow with Router architecture.

This design enables the distribution of complex instruction prompts into smaller,
more specialized nodes. Instead of one large prompt, several targeted sub-queries
are generated, each dispatched to its respective tool. This approach offers two main
advantages:

• Specialization: Each tool receives a query tailored to its specific function,
leading to more accurate and relevant retrieval results.

• Reduced Context: By breaking down the master prompt, each LLM call
operates on a smaller, more focused context, mitigating performance issues
associated with long context windows.
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4.3.4 Artifact 3: Single-Agent

The Single-Agent architecture (Figure 4.3) embodies a centralized agentic ap-
proach, building on the lessons from the first experimental cycle. In this setup, a
single LLM agent manages the entire question-answering process. It has access to
the full suite of tools and autonomously makes decisions about which to invoke, in
what order, and how to synthesize the retrieved information into a final answer.

Figure 4.3: Single-Agent architecture.

The design emphasizes end-to-end reasoning within a unified context,
allowing the model to maintain the same “thought process” from start to finish.
This artifact tests the capability of a standalone LLM agent to manage a RAG
workflow, balancing the tool calling for different knowledge sources, all without the
communication overhead required by multi-agent systems.

4.3.5 Artifact 4: Multi-Agent Supervisor

The Multi-Agent Supervisor setup (Figure 4.4) implements a collaborative, hi-
erarchical system to explore the benefits of distributed cognition. This architecture
consists of two main components:

1. A Supervisor Agent: This master agent receives the user’s query, analyzes
it, and orchestrates the workflow by delegating these tasks to the appropriate
specialist agents.

2. Specialist Agents: A team of agents, each focusing on a specific domain of
knowledge or reasoning skill. For this experiment, each specialist was tied to
a single tool (e.g., a Learned Lessons Agent, an HSE Alert Agent).

The supervisor orchestrates the collaboration, integrates the findings from each
specialist, and synthesizes the potentially divergent information into a single, coher-
ent final answer. This framework is designed to mimic real-world expert collabora-
tion and tests whether decomposing a problem and assigning its parts to dedicated
specialists yields a more accurate result.
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Figure 4.4: Multi-Agent Supervisor architecture with four specialist agents.

4.4 Evaluation

The evaluation phase was designed to be automated, scalable, and objective, ad-
dressing the limitations of the first experimental cycle.

4.4.1 Evaluation Methodology

The core of the evaluation is an automated execution loop (detailed in Algorithm 1)
that runs each of the 33 questions through every combination of artifact (4 setups)
and model (2 models), repeating each run three times to account for stochasticity.

Algorithm 1 Experiment Execution Loop
Require: questions, setups, models
Ensure: results

1: function RunExperiment
2: results← {}
3: for all question ∈ questions do
4: ground_truth← question.ground_truth
5: for all setup ∈ setups do
6: for all model ∈ models do
7: for i ∈ 1 . . . 3 do ▷ Execute 3 times for consistency
8: agent← InitializeAgent(setup, model)
9: response← agent.ProcessQuestion(question)

10: metrics← EvaluateResponse(response, ground_truth)
11: Store metrics and response in results
12: end for
13: end for
14: end for
15: end for
16: return AggregateResults(results)
17: end function

The quality of each generated response is assessed using the LLM-as-a-Judge
approach. A powerful LLM (GPT-4) is prompted to act as an impartial evalua-
tor, comparing the generated answer against the ground-truth answer. The judge
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decomposes both texts into atomic statements and classifies them to build a con-
fusion matrix, from which the final metrics are calculated. The full prompt for the
LLM-as-a-Judge can be found in Appendix A.1.

4.4.2 Data Set Creation

The experiment utilizes a curated dataset developed in collaboration with domain
experts.

• Questions Dataset: A set of 17 questions (10 questions from the first ex-
perimental cycle and 7 new questions) reflecting real-world information needs
of well engineers. Each question is paired with a manually created, expert-
validated ground-truth answer.

• Knowledge Bases: The artifacts were given access to three distinct, pre-
processed knowledge sources from within the organization, vectorized for se-
mantic search:

– Learned Lessons: A repository of learned lessons, best practices, and
operational alerts.

– HSE Alerts: A collection of HSE alerts and incident reports.

– Operational Reports: A database of detailed daily operational reports
from drilling rigs.

4.4.3 Evaluation Metrics

To provide a quantitative and objective assessment, the following information re-
trieval metrics, detailed in Section 2.5.2, were calculated for each response based on
the LLM-as-a-Judge’s analysis:

• Precision: Measures the accuracy of the information presented in the gener-
ated answer. It is the ratio of correct statements (True Positives) to the total
number of statements made.

• Recall: Measures the completeness of the answer. It is the ratio of correct
statements retrieved to the total number of statements available in the ground
truth.

• F1-Score: The harmonic mean of Precision and Recall, providing a single,
balanced measure of overall performance.
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4.4.4 Results

To ensure a robust evaluation and account for the inherent non-determinism of
language models, each of the 17 questions in the dataset was processed three times
for every model and configuration combination. This experimental design resulted
in a total of 408 executions (17 questions × 2 models × 4 configurations × 3 runs).
Each of the 408 generated answers was then compared to a ground truth answer to
calculate performance metrics.

The results presented in this section are derived from this set of runs. For each
of the 136 unique combinations of question, model, and configuration, the best-
performing run (out of three) was selected based on the F1-Score. The final metrics
reported in Table 4.1 represent the average of these best-run scores across all 17
questions for each of the eight model-configuration pairs. This approach presents a
clear view of the potential of each setup, with the F1-Score serving as the primary
metric for performance evaluation.
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Table 4.1: Detailed performance metrics by model and agent configuration. The best result for each metric is highlighted in bold and
underlined. For the inferior model, the best result is only underlined.

Model Configuration
F1-Score Precision Recall

Mean Std. Dev. Min Max Mean Std. Dev. Min Max Mean Std. Dev. Min Max

GPT-4o

Linear-Flow (Baseline) 0.581 0.204 0.000 1.000 0.656 0.262 0.000 1.000 0.548 0.201 0.000 1.000
Linear-Flow w/ Router 0.702 0.202 0.333 1.000 0.805 0.185 0.400 1.000 0.674 0.242 0.286 1.000
Single-Agent 0.643 0.213 0.364 1.000 0.751 0.198 0.400 1.000 0.618 0.240 0.294 1.000
Multi-Agent 0.664 0.214 0.286 1.000 0.746 0.221 0.286 1.000 0.630 0.231 0.286 1.000

GPT-4o-mini

Linear-Flow (Baseline) 0.534 0.208 0.000 0.923 0.604 0.262 0.000 1.000 0.516 0.216 0.000 0.923
Linear-Flow w/ Router 0.604 0.155 0.333 1.000 0.676 0.196 0.300 1.000 0.602 0.206 0.267 1.000
Single-Agent 0.576 0.184 0.308 1.000 0.719 0.214 0.286 1.000 0.544 0.227 0.231 1.000
Multi-Agent 0.596 0.182 0.348 1.000 0.687 0.198 0.400 1.000 0.578 0.201 0.235 1.000
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Figure 4.5: Best F1-Score by model and configuration.

The analysis of the results presented in Table 4.1 and visualized in Figure 4.5
reveals several insights into the performance of the different models and configu-
rations. A primary observation is the consistent performance superiority of the
GPT-4o model over its counterpart, GPT-4o-mini, across all tested configurations.
The most capable configuration for GPT-4o, Linear-Flow w/ Router, achieved a
mean F1-Score of 0.702. This represents a significant performance uplift of approx-
imately 16.2% compared to the best score achieved by GPT-4o-mini (0.604), which
was also with the Linear-Flow w/ Router configuration. This gap underscores the
impact that the model’s reasoning and instruction-following capabilities have on the
overall performance of the system.

Furthermore, the results show that more complex configurations brought a no-
table improvement over the Linear-Flow (Baseline) for both models. The Linear-
Flow w/ Router configuration emerged as the most effective architecture overall.
For the superior GPT-4o model, this configuration boosted the mean F1-Score by
a relative 20.8% over the baseline (from 0.581 to 0.702). It also increased the mean
precision by 22.7% (from 0.656 to 0.805), indicating that the router is highly effec-
tive at selecting the correct reasoning path or tool, thereby reducing incorrect or
irrelevant responses.

While the Single-Agent and Multi-Agent configurations also outperformed the
baseline, they did not reach the performance level of the router-enhanced linear
flow. For GPT-4o, the Multi-Agent setup (F1-Score 0.664) slightly outperformed
the Single-Agent (F1-Score 0.643), but both fell short of the Linear-Flow w/ Router.
This suggests that for the tasks in this experiment, the added complexity of reflective
agent loops or multi-agent collaboration did not yield a proportional benefit over a
more direct, intelligent tool-routing approach.

A crucial aspect of the results is the high standard deviation observed across
all configurations, typically around 0.20 for the F1-Score. The wide range between
minimum and maximum scores indicates that performance is highly variable and
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question-dependent. This suggests that even the best-performing systems can fail
completely on certain queries.

4.4.5 Discussion

The results from this second experimental cycle present a series of compelling, and
in some aspects, counter-intuitive insights into the application of LLM-based ar-
chitectures in specialized technical domains. The most significant finding, which
stands in contrast to the prevailing trends in agentic AI and some initial findings
from our first experiment, is the superior performance of a non-agentic configuration
(Linear-Flow w/ Router) over its more complex, cyclical agentic counterparts. This
outcome challenges the assumption that increased agent complexity, with its capac-
ity for reflection and iterative refinement, universally leads to better performance.
This discussion will explore the primary hypothesis for this phenomenon, explore
other contributing factors, and consider the broader implications for designing AI
systems in niche domains.

The Domain Knowledge Deficit: Why Agentic Reflection Fails

The core benefit of an agentic architecture, whether single or multi-agent, lies in its
ability to perform cyclical reasoning. An agent can call a tool, assess the output,
reflect on its progress, and decide on a new course of action, potentially correcting
earlier mistakes or refining its strategy. This iterative process is a form of simulated
cognition. However, we hypothesize that the effectiveness of this reflective capability
is fundamentally contingent on the LLM’s pre-existing, foundational knowledge of
the subject matter.

For an LLM to effectively judge the output of a tool or the partial answer from a
sub-agent, it must have a robust internal model of what constitutes a good or correct
answer in that domain. Consider, for example, the domain of software engineering.
LLMs like GPT-4o are extensively trained on vast repositories of code, documenta-
tion, and programming discussions. When an agent generates a piece of code, the
LLM can read it, understand its logic, identify bugs, and suggest improvements be-
cause it has been trained on countless similar examples. In this context, a cyclical,
reflective flow is highly effective because the LLM is a competent judge of its own
(or its peers’) output.

The domain of this study, well construction engineering, presents a starkly dif-
ferent scenario. The knowledge is highly specialized, filled with niche terminology,
and often contained within proprietary corporate documents that do not form a
significant part of the public web crawl used to train general-purpose LLMs. Con-
sequently, when an agent in our experiment retrieves a technical snippet from a
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lessons-learned document, the LLM lacks the deep, specialized knowledge required
to effectively critique it. It cannot reliably discern subtle inaccuracies, determine if
the context is fully appropriate, or judge whether a sub-agent’s reasoning is sound
from an engineering perspective.

In this context of a domain knowledge deficit, the cyclical flow of an agentic
system becomes a liability rather than an asset. The reflective loop introduces com-
putational and cost overhead (more LLM calls, more complex state management)
without a corresponding improvement in the quality of reasoning. The agent may
cycle, but it does so without true insight, making the additional complexity inef-
fective. This leads to the observed result: the more straightforward, non-agentic
approach outperforms it.

It is important to stress that this does not dismiss the value of multi-agent archi-
tectures in general. They are plausibly advantageous for: (i) questions with inherent
uncertainty or subjectivity that benefit from debate (e.g., investment decisions) and
(ii) complex, multi-phase reasoning workflows where specialized agents contribute
distinct skills across stages. Our dataset, centered on retrieve-and-synthesize ques-
tions over technical documents, may not fully elicit these strengths, which suggests
that task selection strongly mediates the benefits of agentic reasoning.

The Unsurprising Efficacy of Intelligent Routing

While the agentic systems underperformed, the success of the Linear-Flow w/ Router
configuration is, in itself, a significant finding. Its superior performance can be at-
tributed to its focused efficiency. Rather than engaging in a complex, multi-step
reasoning process, this architecture excels at a single, critical task: intent classifica-
tion and tool selection.

The initial “router” call is a highly targeted use of the LLM’s reasoning power.
Its sole purpose is to analyze the user’s query and map it to the most appropriate
knowledge base (tool). This is a task that even a general-purpose LLM can perform
well, as it relies on semantic understanding rather than deep domain expertise. By
correctly identifying the right tool from the outset, the router ensures that the
subsequent retrieval step is already on the right path.

This approach of “decide once, execute well” proved more effective for this
dataset than the agents’ “execute, reflect, re-execute” loop. It avoids the risk of
error propagation inherent in cyclical systems. In an agentic loop, a minor misinter-
pretation in an early step can be amplified in subsequent cycles as the agent doubles
down on a flawed path. The linear flow of the router configuration is immune to
this, as there are no subsequent cycles to compound an error. The simplicity of
its prompt and execution logic also reduces the chance of “meta-errors”, where the
LLM becomes confused by the complex state and instructions of a multi-turn agentic
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conversation.

Other Plausible Contributing Factors

Beyond the primary hypothesis of the domain knowledge deficit, several other factors
likely contributed to the observed results:

• Nature of the Task: The questions in the experimental dataset, while tech-
nically complex, are primarily information retrieval tasks. They demand find-
ing the correct facts from the knowledge base and synthesizing them into an
answer. They do not necessarily require the kind of complex, multi-step delib-
eration or creative problem-solving where a reflective agent might theoretically
excel. For such “retrieve-and-synthesize” queries, optimizing the retrieval step,
as the router does, yields the greatest performance gain.

• Model Capabilities (GPT-4o vs. GPT-4o-mini): The consistent and
significant performance gap between GPT-4o and GPT-4o-mini across all con-
figurations underscores the critical importance of the underlying model’s rea-
soning and instruction-following capabilities. The superior performance of the
Linear-Flow w/ Router on GPT-4o (F1-Score 0.702) compared to the same
configuration on GPT-4o-mini (F1-Score 0.604) highlights that even the most
effective architecture is gated by the power of the engine driving it.

• High Performance Variance: A crucial observation is the high standard
deviation across all configurations. This indicates that performance is highly
dependent on the specific question being asked. Even the best-performing
system failed completely on some queries (minimum F1-Score of 0.333), while
succeeding perfectly on others (maximum F1-Score of 1.000). This suggests
that no single architecture is universally optimal. Certain query structures or
topics may inherently favor one approach over another, reinforcing the conclu-
sion that the optimal architecture is task- and domain-dependent.

In conclusion, this experiment provides strong evidence that for specialized do-
mains where LLMs lack deep pre-existing knowledge, the architectural focus should
be on optimizing the interface between the query and the external knowledge tools.
A simple, intelligent routing mechanism that accurately directs a query to the cor-
rect source can be more robust and effective than a complex, cyclical agentic system
that attempts to “reason” in a domain it does not truly understand. The assump-
tion that more complexity equals better performance is a fallacy; true effectiveness
comes from aligning the architectural design with both the nature of the task and
the inherent capabilities and limitations of the language model itself.
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Chapter 5

Conclusion

This dissertation embarked on a systematic investigation into the effectiveness, ef-
ficiency, and practical viability of various LLM architectures for domain-specific
information retrieval in well construction engineering. Motivated by the transfor-
mative potential of Generative AI, this research sought to move beyond generalized
benchmarks and provide empirical, actionable insights for the oil and gas industry.
Through two distinct experimental cycles, detailed in Chapters 3 and 4, this study
compared non-agentic, single-agent, and multi-agent systems, culminating in a se-
ries of findings that both validate and challenge prevailing assumptions about the
application of agentic AI in specialized technical domains.

This concluding chapter synthesizes the results of the research by directly ad-
dressing the research questions posed in the Introduction (Section 1.3). It will then
summarize the primary contributions of this work, acknowledge its limitations, and
propose promising directions for future research.

5.1 Answering the Research Questions

The core of this investigation was structured around three central research questions.
The evidence gathered from the two experimental cycles provides the following an-
swers.

RQ1: Performance and Task-Dependency

Which architecture (non-agentic, single-agent, or multi-agent) provides the
highest factual accuracy and overall performance for different types of domain-
specific tasks, specifically complex Q&A and structured Text-to-SQL genera-
tion?
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The answer to this question evolved significantly between the two experiments,
highlighting the importance of rigorous, quantitative evaluation.

• For complex Q&A tasks, the most effective architecture was decisively a
non-agentic Linear-Flow with Router. The second, more rigorous experi-
ment (Chapter 4) demonstrated that this setup achieved the highest F1-Score
(0.702 with GPT-4o), as shown in Table 4.1, outperforming both single-agent
(0.643) and multi-agent (0.664) systems. While the first experiment suggested
that a multi-agent system yielded higher truthfulness (Table 3.3), the more
precise metrics of the second cycle revealed that accurately routing the query
to the correct knowledge source from the outset was more effective than relying
on complex, cyclical agentic reasoning.

• For Text-to-SQL tasks, the first experiment revealed that a single-agent
architecture was surprisingly more effective than a multi-agent one, as
detailed in the results of Chapter 3. This suggests that for more structured,
less ambiguous tasks, the communication and coordination overhead of a multi-
agent system can be detrimental, introducing unnecessary complexity without
a corresponding performance benefit.

RQ2: Cost-Effectiveness

What is the relationship between architectural complexity and economic cost?
How do the performance benefits of more complex systems (e.g., multi-agent)
weigh against their significantly increased computational (API) costs, and
what are the implications for practical deployment?

There is a direct and significant relationship between architectural com-
plexity and economic cost.

The first experiment quantified this trade-off clearly: the multi-agent architec-
ture, while offering an increase from 3.88 to 4.57 in truthfulness for Q&A tasks,
was on average 3.7 times more expensive in terms of LLM API costs (see Fig-
ure 3.11). This increase is driven by the multiple intermediate LLM calls required
for inter-agent communication, deliberation, and coordination.

The most critical finding for practical deployment comes from the second exper-
iment: the most cost-effective architecture (Linear-Flow with Router) was
also the highest-performing. This discovery, evidenced in Table 4.1, resolves the
cost-benefit dilemma in this specific context. There is no need to pay a premium
for a complex agentic system when a simpler, more direct, and cheaper non-agentic
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architecture yields superior results. For organizations in the O&G sector, the impli-
cation is clear: practical deployment should prioritize efficient, well-directed RAG
pipelines over theoretically powerful but ultimately less effective agentic systems.
While the absolute cost of LLM APIs continues to fall, architectural efficiency re-
mains a dominant factor in the total cost of ownership.

RQ3: Agentic Systems and Domain Specificity

Under what conditions do agentic architectures, with their capacity for cyclical
reasoning and reflection, offer a tangible performance advantage over simpler,
non-agentic RAG workflows in a highly specialized technical domain where
the LLM has a significant "knowledge deficit"?

Agentic architectures offer a tangible performance advantage only when the un-
derlying LLM possesses sufficient foundational knowledge of the domain to
make its reflective capabilities meaningful.

This dissertation’s central hypothesis, validated by the results of the second
experiment (Chapter 4) and detailed in the discussion in Section 4.4.5, is the concept
of the "domain knowledge deficit". The primary strength of an agentic system is
its ability to self-critique and iteratively refine its approach. However, this capability
is fundamentally compromised when the LLM lacks the specialized, pre-existing
knowledge to accurately judge the quality of retrieved information. In the domain
of well construction engineering, the LLM cannot reliably discern subtle inaccuracies
or assess the contextual relevance of technical data from proprietary documents.

Consequently, the agent’s reflective loop becomes ineffective; it iterates without
substantive insight, adding computational cost and complexity without commensu-
rate performance gains. Therefore, the condition under which agentic systems are
likely to excel is the absence of a severe knowledge deficit. In domains where the
LLM is already a competent "junior analyst" (e.g., general programming, finance),
agentic reflection is powerful. In highly niche industrial domains, a streamlined,
non-agentic workflow that focuses on perfecting the retrieval step is the superior
strategy.

5.2 Summary of Contributions

This dissertation makes several contributions to the field of applied AI:

1. Primary Theoretical Contribution: The most significant contribution is
the empirical evidence that, contrary to the prevailing hype, non-agentic ar-
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chitectures can outperform more complex agentic systems in special-
ized domains. This work introduces and validates the "domain knowledge
deficit" as a key explanatory framework (Section 4.4.5) for why the reflective
capabilities of current LLM agents fail in niche technical contexts.

2. Methodological Contribution: This research developed and executed a
robust, automated evaluation pipeline using an LLM-as-a-judge, a
concept explored by ZHENG et al. (2023). This methodology, detailed in
Chapter 4, provides a scalable and objective alternative to manual expert
evaluation, enabling the calculation of quantitative metrics (Precision, Recall,
F1-Score) and facilitating more rigorous comparisons of RAG systems.

3. Practical Contribution: The findings provide clear, evidence-based
guidance for the O&G industry. Instead of defaulting to complex and
costly agentic frameworks, organizations should focus their efforts on build-
ing highly efficient retrieval and routing mechanisms. The Linear-Flow with
Router architecture, described in Chapter 4, serves as a powerful and practical
template for developing high-performing, cost-effective information retrieval
solutions.

4. Scholarly Contribution: Portions of this work have been disseminated as a
peer-reviewed journal publication in the petroleum engineering literature,
helping to position these results within the broader scientific discourse and to
support their reproducibility and impact (SABBAGH et al., 2024).

5.3 Limitations and Future Work

No research is without limitations. The findings of this study are based on a specific
dataset and a set of knowledge bases within the well construction domain. While the
"domain knowledge deficit" is a generalizable concept, its specific impact may vary
in other domains. Furthermore, the LLM-as-a-Judge approach, while scalable, has
its own potential biases, as noted by GU et al. (2025). Finally, the LLM landscape
is evolving at an extraordinary pace; the specific performance of the models used is
a snapshot in time, though the architectural insights are likely more enduring.

These limitations pave the way for several exciting avenues for future research:

• Mitigating the Knowledge Deficit: Future work should focus on strategies
to "upskill" the LLM, such as extensive fine-tuning on proprietary corporate
data. This aligns with the trend toward specialized models (SHAH, 2024;
MEENA, 2023; GHOSH, 2023) and could determine if the knowledge deficit
can be reduced to a point where agentic reflection becomes effective.
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• Dataset Scale and Statistical Power: Expanding the size and diversity of
the evaluation dataset would increase statistical representativeness and enable
stronger inference (e.g., narrower confidence intervals, more reliable signifi-
cance testing, stratified analyses by question type). A larger dataset would
also help assess robustness across rare but practically important query cate-
gories.

• Advanced Routing: Research into more sophisticated, dynamic routing
mechanisms that can handle multi-tool dependencies and conditional logic
without the full overhead of an agentic loop could yield further performance
gains.

• Hybrid Architectures: Exploring hybrid systems that use an efficient router
for initial tool selection but grant selective, minimal agentic capabilities for
specific, well-defined sub-tasks could offer a compelling balance of efficiency
and power.

• Generalizability: Applying this dissertation’s evaluation framework to other
specialized domains (e.g., legal, aerospace, pharmaceuticals) would be invalu-
able for testing the generalizability of the "domain knowledge deficit" hypoth-
esis.

5.4 Final Remarks

The journey to effectively harness the power of LLMs within specialized industries
is just beginning. This dissertation demonstrates that the path to success is not
necessarily paved with greater complexity. For the unique challenges of well con-
struction engineering, and likely many other technical fields, the most effective AI
systems are not those that attempt to replicate human cognition in a domain they
do not understand, but those that are engineered for maximal efficiency at the
crucial interface between the user’s query and the organization’s knowledge. The
counter-intuitive success of a simple, non-agentic router over its more complex agen-
tic cousins, as demonstrated in Chapter 4, provides a crucial lesson: in the world of
applied AI, architectural choices must be guided by a sober assessment of a model’s
real-world capabilities, where well-directed simplicity often triumphs over unguided
complexity.
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Figure A.1: Comparison between the implemented RAG configurations.

A.2 Dataset
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Table A.1: Dataset used in the thesis experiments (Landscape).

Question Ground Truth
Cite acidentes envol-
vendo colisão entre top
drive e outros equipa-
mentos.

1. Colisão do Top Drive com Coluna de Produção na Mesa Auxiliar Durante a montagem de coluna de produção 6 5/8" na mesa auxiliar, o top drive colidiu com o último
tubo acunhado na mesa rotativa, causando empenamento do tubo. A causa foi falha de planejamento e avaliação de risco, pois o top drive não foi retraído totalmente
antes da descida.
2. Colisão entre o Top Drive e a Hydraracker Durante manobra de descida de coluna de Drill Pipe 5", o top drive colidiu com o braço principal da Hydra Racker que
estava sendo estendido. A colisão provocou o desprendimento entre o braço principal e o braço inferior da Hydra Racker, com queda de uma peça de 2,7kg de altura de
27m. Causas incluíram operação em modo manual e configuração inadequada do sistema anticolisão.
3. Colisão do Top Drive com Seção de Drill Pipe Durante manobra de retirada do BHA de 8 7/8", o top drive colidiu com a seção de Drill Pipe sustentada pelo PRS
(Pipe Racking System). Com o impacto, a carenagem frontal do top drive foi cisalhada e caiu no piso do rigfloor de uma altura de 20m, pesando aproximadamente 85kg.
4. Interação do Top Drive Auxiliar com Equipamentos de Segurança Durante conexão de mangueira MPD, o cabo da trava quedas de um plataformista ficou preso no
arranjo de içamento do top drive auxiliar, provocando a suspensão do trabalhador. O incidente ocorreu por falha na análise de risco e comunicação inadequada.

Quais as causas e fal-
has típicas de acidentes
ou incidentes envol-
vendo guarda corpo?
Cite alertas que re-
tratem isso.

Os acidentes ou incidentes envolvendo guarda-corpo geralmente ocorrem devido a falhas de projeto, gestão de processos, especificação inadequada do serviço, e falta de
procedimentos específicos. Aqui estão algumas causas e falhas típicas.
1. Falha de Equipamentos e Projeto de Engenharia Deficiente: O projeto do guarda-corpo pode não ser adequado para a operação, levando a deslocamentos inesperados
e acidentes. (Fonte: Definitivo - Lesão no dorso do pé direito devido ao choque com guarda corpo_ POCOS SM _Abrange+2023-000154)
2. Falha na Gestão de Processos e Pessoas: Inclui falhas no processo de qualificação da empresa contratada, violação de procedimentos por supervisores, e falta de
documentos específicos para avaliação de operações. (Fonte: Definitivo - Lesão no dorso do pé direito devido ao choque com guarda corpo_ POCOS SM _Abrange+2023-
000154)
3. Falha de Identificação de Risco Adicional de Queda: Não identificar riscos adicionais, como vãos entre a gaiola da escada e o guarda-corpo, pode resultar em quedas
fatais. (Fonte: Acidente fatal-Queda de altura - REVAP-MA-PM_ Abrange 2023-000279)
4. Movimento Irregular da Carga e Falha no Freio do Guindaste: Durante movimentações de carga, falhas no equipamento podem causar impactos que danificam o
guarda-corpo e resultam em quedas de objetos. (Fonte: Alerta Definitivo - Vermelho - Descida descontrolada de carga - Divulgação equipe movimentação carga)

Continued on next page
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Table A.1 – Continued from previous page
Question Ground Truth
Quais foram as prin-
cipais falhas identi-
ficadas em acidentes
com pés, de acordo
com os Alertas de
SMS?

As principais falhas identificadas em acidentes envolvendo pés incluem:
1. Planejamento inadequado e falta de análise de risco: Muitos acidentes ocorreram devido à falta de planejamento adequado e análise de risco antes de realizar atividades,
como movimentação de cargas e içamento de peças. Isso foi observado em acidentes como o de fratura em três metatarsos do pé esquerdo durante a fabricação de um
corrimão na oficina de solda ("Preliminar AMARELO - Acidente com Lesão - Fratura - Geral - POCOS SM 055 2022").
2. Uso inadequado de Equipamentos de Proteção Individual (EPI): Em alguns casos, o uso inadequado ou a falta de EPI apropriado, como botas de segurança com
proteção para metatarso, contribuiu para a ocorrência de acidentes. Isso foi destacado em acidentes como o corte contuso no pé esquerdo durante a manutenção de um
gerador ("Definitivo AMARELO - Corte contuso no pé_ Geral_ POCOS SM 019_rev01").
3. Falta de percepção de riscos e consciência situacional: A falta de percepção de riscos e a escolha de caminhos mais curtos sem avaliar o ambiente contribuíram para
acidentes, como a torção no tornozelo ao pisar em uma madeira de apoio de carga ("Definitivo -Torção no tornozelo ao pisar sobre uma peça de madeira - POCOS SM
025 2023").
4. Falhas na supervisão e no cumprimento de diretrizes: A supervisão inadequada e o não cumprimento de diretrizes e procedimentos de segurança foram fatores em
acidentes, como o de fratura no tornozelo ao tropeçar em um umbilical no convés ("Definitivo VERMELHO - Fratura no tornozelo_Geral_ POCOS SM 016 2021").
5. EPI Inadequado: Uso de botas sem características anti-torção e solado adequado para ambientes offshore, como mencionado no acidente de torção de tornozelo ao
descer escada (POCOS SM 009 2021).

Como a presença de
sílica na composição da
pasta de cimento afeta
sua estabilidade tér-
mica em altas temper-
aturas, de acordo com
as lições aprendidas?

A sílica é adicionada ao cimento na proporção de 35% por peso de cimento com o objetivo de mitigar a retrogressão (perda da resistência compressiva) do cimento no poço
quando submetido a temperaturas superiores a 230°F (110°C). Esta prática é comum em poços profundos ou com gradiente geotérmico elevado que, em suas fases finais,
ultrapassam a temperatura limite. A presença de sílica na pasta de cimento também pode ser necessária em situações onde a temperatura nos anulares dos revestimentos
durante a produção do poço seja bastante elevada, mesmo em menores profundidades.
A ausência de sílica no cimento sujeito a temperaturas superiores a 230°F pode resultar numa perda de resistência compressiva no cimento, levando a problemas de
isolamento.
Entretanto, é importante observar que a má preparação da pasta de cimento pode resultar em propriedades da pasta inhomogêneas durante a fabricação e bombeamento.
Isso pode levar a gelificação prematura e possível prisão da coluna. Em caso de anormalidades na preparação da pasta, recomenda-se a realização da cimentação em
bateladas.
Referências:
Alerta Técnico AT5533: Utilização de cimento com sílica na cimentação de revestimentos de superfície. Autor: Jan Fernandes Aslan. Data: 16/11/2020.
Alerta Técnico AT10479: Substituição indevida de cimento com sílica por cimento puro em cimentação de revestimento de superfície em poço com temperatura elevada.
Autor: Rafael Peralta Muniz Moreira. Data: 14/02/2021.

Continued on next page
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Table A.1 – Continued from previous page
Question Ground Truth
De acordo com as
lições aprendidas,
como a inclinação do
poço afeta a eficácia
da cimentação du-
rante o tamponamento
through tubing?

Durante o tamponamento through tubing em poços de alta inclinação (maior que 45 graus), a eficácia da cimentação pode ser afetada por fatores advindos da inclinação
do poço. Segundo um Alerta Técnico (AT9613), essa situação aumenta a complexidade das operações de tamponamento devido ao fato de a coluna de produção/injeção
estar descentralizada dentro do revestimento de produção.
Além disso, outras dificuldades surgem, como:
- Dificuldade no assentamento de cement retainer inflável - Dificuldade na descida de ferramentas de perfilagem e plugs para isolamento preliminar abaixo do trecho do
poço a ser tamponado
Estes fatores podem resultar em poços com qualidade média ou falha na cimentação. Recomenda-se por agora, até que estudos mais aprofundados sejam realizados, uma
análise criteriosa de cada cenário e a escolha de alternativas mais robustas para o abandono de poços de alta inclinação e a seleção de escopo de projeto executivo de
abandono, detalhamento operacional e estimativa dos riscos e tempos da intervenção.
Por outro lado, existem algumas alternativas como o Bombeio Direto de Cimento (BDC) para abandono permanente through tubing (TT). Isso permite o bombeio de
pasta de cimento diretamente pelo riser dual bore, passando pela COP/COI até ser posicionada em anular “A” (COP x revestimento). No entanto, essa técnica também
tem suas restrições e premissas, como necessidade de emprego de Riser Dual Bore e menor tolerância ao erro no deslocamento de pasta.
Em resumo, a inclinação do poço pode afetar a eficácia da cimentação durante o tamponamento através do tubo, tornando a operação mais complexa e aumentando o
risco de falhas na cimentação. Diferentes abordagens e tecnologias estão sendo estudadas para otimizar essas operações e minimizar os riscos.

De acordo com as
lições aprendidas,
quais são os riscos
associados à substitu-
ição de cimento com
sílica por cimento puro
em cimentações de
revestimento de su-
perfície em poços com
temperatura elevada?

Estes são os principais riscos associados à substituição indevida de cimento com sílica por cimento puro em poços de alta temperatura:
1. O cimento puro, quando submetido a altas temperaturas (acima de 110°C), sofre uma regressão de sua resistência compressiva ao longo do tempo, podendo comprometer
sua função em poços de petróleo como elemento de barreira.
2. Falhas na cimentação do revestimento de superfície podem levar a custos e impactos adicionais, como o vazamento de fluidos de perfuração para o fundo do mar e o
aumento das cargas hidrostáticas sobre o revestimento de superfície e os revestimentos subsequentes instalados.
3. Em alguns casos, a bainha de cimento pode ser exposta a temperaturas acima de 110°C em algum momento do ciclo de vida do poço. Nesses casos, o uso de cimento
com sílica deve ser mantido para garantir a estabilidade térmica da pasta de cimento.
4. A substituição indevida pode levar a outros riscos como escape de fluidos de perfuração do anular C para o fundo do mar, alterações no dimensionamento do
revestimento, alterações no desenho de projeto de início de poço, entre outros.
Deve-se ressaltar que a intenção de reduzir o tempo de aguardo de cura do cimento não justifica a substituição do cimento com sílica por cimento puro, pois existem
outros métodos para alcançar uma cura mais rápida, como o aumento da densidade da pasta ou o uso de aditivos.
Esse fenômeno é conhecido na indústria do petróleo desde 1954 e foi mitigado pela introdução de sílica cristalina na composição da pasta de cimento para garantir a
estabilidade térmica.

Continued on next page
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Table A.1 – Continued from previous page
Question Ground Truth
Quais estratégias
podem ser adotadas
para melhorar a qual-
idade da cimentação
em poços de alta
inclinação durante
o tamponamento
through tubing, de
acordo com as lições
aprendidas?

Com base nos itens de conhecimento obtidos, algumas estratégias para melhorar a qualidade da cimentação em poços de alta inclinação durante o tamponamento through
tubing incluem:
1. Aumento das vazões no deslocamento quando a cimentação é executada com flexitubo. Este procedimento auxilia na melhor distribuição do cimento no espaço anular
e contribui para uma melhor qualidade de cimentação.
2. Utilização de dispositivos para vibração da coluna durante a cimentação. A vibração pode ajudar a melhorar a aderência do cimento no espaço anular tornando a
cimentação mais eficaz.
3. Utilização de volumes de excesso de pasta de cimento compatíveis com uma operação que busque robustez máxima. Este procedimento garante que haja cimento
suficiente para preencher o espaço anular ao longo de todo o comprimento da coluna.
4. Análise criteriosa de cada cenário e seleção de uma alternativa mais robusta para o abandono (preferencialmente com a retirada da coluna). Isso é particularmente
importante para poços de alta inclinação e outros cenários que adicionem complexidade ao tamponamento.
5. Previsão no cronograma da intervenção da perfilagem de avaliação da cimentação como método de verificação. Isso permite a identificação de possíveis falhas ou áreas
de cimentação insatisfatória para um possível retoque da cimentação.
6. Uso do Bombeio Direto de Cimento (BDC) para abandono permanente through tubing, uma técnica que pode otimizar o tempo e reduzir os riscos operacionais,
embora com restrições específicas.
Por último, é importante lembrar que toda situação é única e deve ser avaliada individualmente de acordo com as suas características específicas.

Quais são as alter-
nativas para acelerar
o tempo de cura da
pasta de cimento sem
comprometer sua inte-
gridade em condições
de temperatura ele-
vada, de acordo com
as lições aprendidas?

As melhores práticas incluem o aumento da densidade da pasta, o uso de aditivos e a consideração da rampa de cura, mas é importante manter a utilização de cimento
com sílica para garantir a integridade da cimentação em condições de temperatura elevada.

Continued on next page
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Table A.1 – Continued from previous page
Question Ground Truth
Quais são os princi-
pais desafios e riscos as-
sociados ao tampona-
mento through tubing
em poços de alta incli-
nação, de acordo com
as lições aprendidas?

Existem vários desafios e riscos associados ao tamponamento through tubing em poços de alta inclinação, conforme revelado no Alerta Técnico "Risco de falha de
cimentação em tamponamento through tubing em poços de alta inclinação (45 graus)". Os principais problemas incluem:
- Maior complexidade nas operações de tamponamento devido à descentralização da coluna de produção/injeção dentro do revestimento de produção em poços com alta
inclinação. - Dificuldade no assentamento de cement retainer inflável em poços inclinados. - Dificuldade na descida de ferramentas de perfilagem e plugs para isolamento
preliminar abaixo do trecho do poço a ser tamponado.
Além disso, foi observado que em poços de alta inclinação (> 45 graus), a qualidade da cimentação é, muitas vezes, apenas média, cumprindo apenas os requisitos mínimos
e, em alguns casos, levando a falhas na cimentação.
No atual cenário, para melhorar os resultados, é sugerido o uso de vazões no deslocamento superiores quando a cimentação é realizada com flexitubo, a realização do uso
de dispositivos para vibração da coluna durante a cimentação e o uso de volumes excedentes de pasta compatíveis com uma operação da maior robustez possível.
Destaca-se também a importância do controle de circulação e perda de fluido durante a perfuração da fase do reservatório. Em situações de perda de circulação severa,
a perfuração com água do mar e tampões viscosos pode ser uma alternativa segura para evitar custos e riscos adicionais.
É relevante mencionar também o uso de métodos sustentáveis e eficientes de combate à perda de fluido pós-teste de formação, em que um tampão especial de filtrado
relaxado pode ser uma solução viável, trazendo economia e eficiência operacional.
No entanto, até que um estudo mais aprofundado sobre as causas desses problemas seja realizado e medidas de melhoria sejam implementadas, recomenda-se a seleção
cuidadosa do plano de abandono e a análise prévia de cada cenário para poços de alta inclinação.

Cite problemas op-
eracionais ocorridos
na sonda NS-48 em
2024, de acordo com
o SITOP? Liste todas
as ocorrências que
encontrar.

1. Falha no Sistema de Rotação do Top Drive: Houve uma investigação contínua sobre uma falha no sistema de rotação do top drive, que impossibilitou a conexão à
coluna. Durante o período de espera, o ponto de acunhamento da cunha foi alterado duas vezes. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-
48/2024-07-19/M" target="blank">Documento da sonda NS-48 - 2024-07-19 11:50</a>
2. Condições Ambientais Adversas: Em várias ocasiões, as operações foram interrompidas devido a condições ambientais adversas, como ventos fortes, que impedi-
ram a montagem de equipamentos de arame e a retirada de plugues. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-48/2024-05-09/M" tar-
get="blank">Documento da sonda NS-48 - 2024-05-09 07:30</a>
3. Atrasos na Instalação de Equipamentos: Houve atrasos na instalação de equipamentos, como a ANM CCB-462, devido à espera por embarcações de apoio, o que
impactou o cronograma das operações. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-48/2024-05-21/M" target="blank">Documento da sonda
NS-48 - 2024-05-21 05:24</a>
4. Problemas com o WSSV Blue Marlim: A sonda enfrentou problemas operacionais devido à indisponibilidade do WSSV Blue Marlim para operar conectado,
causada por condições de mar adversas e problemas no gerador do barco. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-48/2024-04-13/T" tar-
get="blank">Documento da sonda NS-48 - 2024-04-13 13:29</a>
5. Falha no sistema de rotação do top drive: Houve uma investigação sobre a falha no sistema de rotação do top drive, que impossibilitou a conexão à coluna. Durante o
período de aguardo, o ponto de acunhamento da cunha foi alterado duas vezes. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-48/2024-07-19/M"
target="blank">NS-48 - 2024-07-19</a>
6. Aguardando troca de turma: Houve um período de espera para troca de turma do WSSV Blue Marlim, durante o qual foram realizadas operações de mini-TI e
recalcamento de fluidos. Fonte: <a href="https://wellsom.petrobras.com.br/sitopi/sonda/NS-48/2024-04-12/M" target="blank">NS-48 - 2024-04-12</a>
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Table A.1 – Continued from previous page
Question Ground Truth
Em quais poços foi
utilizado Well Stro-
ker para abertura e
fechamento de VIF,
de acordo com o
SITOP? Liste todas
as ocorrências que
encontrar.

Foram encontrados 6 poços com ocorrência de uso de Well Stroker para abertura e fechamento de VIF 1. 8-BUZ-55-RJS 2. 7-BAZ-3-ESS 3. 8-RO-146HP-RJS 4.
7-CRT-52-RJS 5. 8-BUZ-58D-RJS 6. 7-JUB-61D-ESS 7. 8-ATP-7D-RJS 8. 3-RJS-688A

Em quais poços haverá
cimentação de reves-
timento entre as
próximas operações, de
acordo com o SITOP
do dia 13/05/2025?
Informe somente a
lista de nomes dos
poços. Liste todos os
poços que encontrar,
não tente resumir.

Nos próximos dias, haverá operações de cimentação de revestimento nos seguintes poços:
1. Poço 7-BUZ-95-RJS
2. Poço 7-JUB-81H-ESS
3. Poço 7-BUZ-94D-RJS
4. Poço 8-MRO-36-RJS
5. Poço 8-BUZ-101-RJS
6. Poço 9-AB-138D-RJS
7. Poço Buena Suerte-1
8. Poço 7-BUZ-94D-RJS

Em qual poço está a
sonda NS-39, de acordo
com o SITOP? Con-
sidere que a data de
hoje é 05/01/2025.

A sonda NS-39 está operando no poço 7-MRO-37-RJS.

Quais as últimas op-
erações efetuadas no
poço 7-MRL-244H-
RJS, de acordo com
o SITOP do dia
05/01/2025?

Operação Principal: MP: Circulado FPBNA 9,4 ppg via coluna a 8 bpm / 270 psi. MP: Bombeado 50 bbl de colchão espaçador 11,0 ppg via bomba da sonda 6 bpm /
230 psi e deslocado com 10 bbl de FPBNA 9,4 ppg a 6 bpm / 230 psi pela bomba da sonda. MP: Bombeado 96 bbl de pasta de cimento 15,8 ppg a 4 bpm e deslocado
com 6,9 bbl de colchão espaçador 11 ppg e com 59 bbl de FPBNA 9,4 ppg. MP: Retirada coluna até 939 m (mais de 200 m acima do TOC), circulado para limpeza da
coluna com FPBNA 9,4 ppg e fechado BOP anular. MP: Bombeado via UC 68 bbl de FPBNA 9,4 ppg pela coluna e efetuando squeeze do cimento no overlap liner 10,75"
x revestimento 13,626" a 1 bpm/ 260 psi, 2 bpm/ 330 psi, 3 bpm/ 340 psi e a 4 bpm/ 410 psi. MP: Iniciado aguardo de pega de 11 h do cimento às 21:30 h.
Operação Paralela: MA: Continuada montagem e estaleiramento do BHA 8 1/2". MA: Iniciada montagem do Djar e de ferramenta de condicionamento do topo do liner.

Continued on next page
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Table A.1 – Continued from previous page
Question Ground Truth
Quais foram as oper-
ações executadas na
NS-42 em 22/06/2024,
de acordo com o
SITOP?

Descido conjunto FDR/TRT com coluna de DPR 6 5/8" até 936 m. Efetuado dummy run com coluna de DPR e ajustado balanceio. Conectada coflex na SFT. Efetuada
plumbagem da SFT. Verticalizado arranjo de superfície com SFF, EBE, links articulados e conectado DPR 6 5/8" da SFT na coluna. Em paralelo, limpado TMF da
ANM pelo ROV. Montado BOP de arame sobre a SFT.
Finalizada montagem das linhas de superfície e manifold auxiliar. Efetuado teste de estanqueidade das linhas de superfície com 300 psi / 4500 psi por 5 min / 10 min.
Efetuado teste de estanqueidade do DPR até as valvulas VG5 e XO da FDR com 3500 psi por 10 min. Hold Point aprovado pelo CSD-EQSB Efetuado flush do DPR e
HCR para limpeza. Posicionado FCBA inibido com MEG 10

Qual o SITOP de hoje
da NS-45? Considere
que a data de hoje é
05/01/2025.

A situação operacional da sonda NS-45 em 05/01/2025 é a seguinte:
Operação Principal - **Manutenção do BOP**: As manutenções do BOP estão 63- **Situação Atual**: A operação está aguardando a substituição do conector para
16 3/4" e a troca da gaveta de tubos fixa do BOP, além de manutenções e testes. A previsão de conclusão dessas atividades é para 07/01. - **Próximas Operações**:
Prosseguir com a substituição do conector e gaveta de tubos do BOP, manutenções e testes (em andamento). Está previsto descer o BOP em 07/01.
Operação Paralela - **Atividades**: Atualmente, não há operações em andamento. Estão sendo programadas ferramentas MLWD para montagem do BHA e fabricado
fluido FPBA para perfuração BHD. - **Próximas Operações**: Está prevista a montagem do BHA de perfuração com Broca PDC 8 1/2", RSS, Ferramentas MLWDs e
Alargador 9 1/2" para 06/01.

Qual sonda completou
o poço 7-JUB-62DA-
ESS, de acordo com o
SITOP?

A sonda que completou o poço 7-JUB-62DA-ESS foi a NS-40
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A.3 Evaluation Prompt

1 class Confusion_Matrix ( TypedDict ): # type: ignore

2 true_positive : list[str]

3 false_positive : list[str]

4 true_negative : list[str]

5 false_negative : list[str]

6
7 def calculate_metrics (llm , question , history ):

8 if type( question [’Ground Truth ’]) == str:

9 prompt_confusion_matrix = f""

10 Voce recebera os seguintes parametros :

11 Pergunta : a pergunta do usuario

12 Resposta Ideal: a resposta considerada correta

por um humano

13 Resposta do sistema : a resposta fornecida pelo

sistema baseado em IA

14
15 Pegue a resposta do sistema , separe em afirmacoes

e classifique cada afirmacao entre as opcoes abaixo :

16 True Positive (TP): as afirmacoes corretas feitas

pelo sistema , ou seja , que estao presentes na resposta

ideal.

17 False Positive (FP): as afirmacoes incorretas ou

irrelevantes feitas pelo sistema , ou seja , que nao estao

presentes na resposta ideal.

18
19 Pegue a resposta ideal , separe em afirmacoes e

classifique cada afirmacao entre as opcoes abaixo :

20 True Negative (TN): Nao se aplica , deixar vazio.

21 False Negative (FN): as afirmacoes que constam na

resposta ideal , mas nao foram feitas pelo sistema .

22
23 Importante :

24 - Voce deve gerar listas de afirmacoes para cada

categoria .

25 - Voce deve quebrar as respostas do sistema e a

ideal em afirmacoes objetivas .

26 - Se as respostas do sistema ou a ideal

contiverem frases grandes com mtas afirmacoes , analisar

cada afirmacao separadamente .
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27 - Uma afirmacao nao pode estar em mais de uma

categoria .

28 - Ignore coisas na resposta do sistema que nao

sao afirmacoes objetivas , como por exemplo citacoes de

fontes e links.

29
30 Vamos la!

31
32 # ###########

33
34 Pergunta : {{{{

35 { question [’Question ’]}

36 }}}}

37
38 Resposta ideal: {{{{

39 { question [’Ground Truth ’]}

40 }}}}

41
42 Resposta do sistema : {{{{

43 { history [ -1]. content }

44 }}}}"

45 response = llm. with_structured_output (

Confusion_Matrix ). invoke ( prompt_confusion_matrix )

46
47 true_positive_count = len( response .get(’ true_positive

’, []))

48 false_positive_count = len( response .get(’

false_positive ’, []))

49 true_negative_count = len( response .get(’ true_negative

’, []))

50 false_negative_count = len( response .get(’

false_negative ’, []))

51
52 try:

53 precision = true_positive_count / (

true_positive_count + false_positive_count )

54 except ZeroDivisionError :

55 precision = 0

56
57 try:

58 recall = true_positive_count / (

79



true_positive_count + false_negative_count )

59 except ZeroDivisionError :

60 recall = 0

61
62 try:

63 f1_score = 2 * ( precision * recall ) / ( precision

+ recall )

64 except ZeroDivisionError :

65 f1_score = 0

66
67 print("\\n\\ nPrecision : "+str( precision ))

68 print(" Recall : "+str( recall ))

69 print("F1 Score: "+str( f1_score ))

70
71 print("\\ nAnswer Size Ratio: "+str( question [’ Answer

Size (% of GT) ’]))

72
73 state. precision = precision

74 state. recall = recall

75 state. f1_score = f1_score

76 state. ground_truth = question [’ Ground Truth ’]

77 state. statements = response

Listing A.1: Código para LLM-as-a-Judge

80



A.4 Results

A.4.1 Precision

Best Precision by Model and Configuration

Figure A.2: Best precision by model and configuration.

Best Precision by Question Index and Configuration

Figure A.3: Best precision by question index and configuration.
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Best Precision by Question Index and Model

Figure A.4: Best precision by question index and model.

Facet Histogram of Precision by Model

Figure A.5: Facet histogram of precision by model.

82



Histogram of All Precisions

Figure A.6: Histogram of all precisions.

Line Plot of Precision by Question Index and Model

Figure A.7: Line plot of precision by question index and model.
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Precision by Model and Configuration

Figure A.8: Precision by model and configuration.

Line Plot of Precision by Question Index and Configuration

Figure A.9: Line plot of precision by question index and configuration.
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Scatter Plot of Precision vs. Total Time

Figure A.10: Scatter plot of precision vs. total time.

Scatter Plot of Precision vs. Total Token Count Input

Figure A.11: Scatter plot of precision vs. total token count input.
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A.4.2 Recall

Best Recall by Model and Configuration

Figure A.12: Best recall by model and configuration.

Best Recall by Question Index and Configuration

Figure A.13: Best recall by question index and configuration.
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Best Recall by Question Index and Model

Figure A.14: Best recall by question index and model.

Facet Histogram of Recall by Model

Figure A.15: Facet histogram of recall by model.
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Histogram of All Recalls

Figure A.16: Histogram of all recalls.

Line Plot of Recall by Question Index and Model

Figure A.17: Line plot of recall by question index and model.
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Line Plot of Recall by Question Index and Configuration

Figure A.18: Line plot of recall by question index and configuration.

Scatter Plot of Recall vs. Total Time

Figure A.19: Scatter plot of recall vs. total time.
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Scatter Plot of Recall vs. Total Token Count Input

Figure A.20: Scatter plot of recall vs. total token count input.
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